[急]如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC
答案:3 悬赏:70 手机版
解决时间 2021-01-04 00:26
- 提问者网友:轮囘Li巡影
- 2021-01-03 04:09
如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC 求证:(1)CD⊥DF;(2)BC=2CD
最佳答案
- 五星知识达人网友:山河有幸埋战骨
- 2021-01-07 00:30
(1)AB=AD ==>弧AB=弧AD,∠ADB=∠ABD
弧AB对应的圆周角有两个∠ACB=∠ADB
弧AD对应的圆周角有两个∠ACD=∠ABD
∠ACB=∠ADB=∠ABD=∠ACD
∠ADB=180-∠BAD=90-∠DFC
∠ADB+∠DFC=90
CD⊥DF
(2)过F做FG垂直BC
因为∠ACB=∠ADB
又∠BFC=∠BAD
所以∠FBC=∠ABD=∠ADB=∠ACB
则FB=FC
所以FG平分BC,G为BC中点,∠GFC=1/2∠BAD=∠DFC
证明三角形FGC全等于三角形DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD)
所以CD=GC=1/2BC
BC=2CD
弧AB对应的圆周角有两个∠ACB=∠ADB
弧AD对应的圆周角有两个∠ACD=∠ABD
∠ACB=∠ADB=∠ABD=∠ACD
∠ADB=180-∠BAD=90-∠DFC
∠ADB+∠DFC=90
CD⊥DF
(2)过F做FG垂直BC
因为∠ACB=∠ADB
又∠BFC=∠BAD
所以∠FBC=∠ABD=∠ADB=∠ACB
则FB=FC
所以FG平分BC,G为BC中点,∠GFC=1/2∠BAD=∠DFC
证明三角形FGC全等于三角形DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD)
所以CD=GC=1/2BC
BC=2CD
全部回答
- 1楼网友:行雁书
- 2021-01-07 01:20
有图吗?
- 2楼网友:时间的尘埃
- 2021-01-07 00:50
F是圆心,∠BFD是圆心角,∠BAD是圆周角,就知道这些!对不起了!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |