已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
答案:1 悬赏:40 手机版
解决时间 2021-07-31 18:20
- 提问者网友:练爱
- 2021-07-30 22:50
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
最佳答案
- 五星知识达人网友:几近狂妄
- 2021-07-30 23:07
a(n+1)=4(n+1).an/(3an+n)
3an.a(n+1) + na(n+1) = 4(n+1)an
3 + n/an= 4(n+1)/a(n+1)
4(n+1) [ 1/a(n+1) -1/(n+1) ]= n[ 1/an -(1/n)]
[ 1/a(n+1) -(1/(n+1) ]/[ 1/an -(1/n)] = (1/4)[n/(n+1)]
[ 1/an -(1/n)]/[ 1/a(n-1) -(1/(n-1) ] = (1/4)[(n-1)/n]
[ 1/an -(1/n)]/[ 1/a1 -1/1 ] = (1/4)^(n-1) . (1/n)
1/an -(1/n) = -(1/n).(1/4)^n
1/an = (1/n) [ 1- (1/4)^n ]
an = n/[ 1- (1/4)^n]
再问: 我早就做出来了,不过还是很感谢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯