要资料,给文字就可以了,两三个主题,一共五六百字就好,求求各位了!!!求求各位!!!
快开学了,各位帮帮我吧!!!!!!!!!!!!!!!!!!!!
感谢你们一辈子。。。。。。。。。~~~~~~~~~~~~~~~
跪求数学小报材料!!!急急急!!!
答案:4 悬赏:10 手机版
解决时间 2021-02-14 08:41
- 提问者网友:沉默菋噵
- 2021-02-13 13:32
最佳答案
- 五星知识达人网友:举杯邀酒敬孤独
- 2021-02-13 14:59
质数与合数(主打)
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。
合数是指
①两个数之间的最大公因数只是1的那两个数的乘积;
②两个数之间的公约数不只是1,用其中一个约数乘以最小的数,能整除,乘出来的那个数就是合数
合数又名合成数,是满足以下任一(等价)条件的正整数:
1.是两个大于1 的整数之乘积;
2.拥有某大于1 而小于自身的因数(因子);
3.拥有至少三个因数(因子);
4.不是1 也不是素数(质数);
5.有至少一个素因子的非合数。
6、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。也就是说:由三个以上素数的乘积组成的合数,不可以视为两个素数的乘积!(也可以说除了1和它本身以外还有别的因数)合数
7、合数指的是:一个数除了1和它本身以外还有别的因数(第三个因数),这个数叫做合数。 8、“1”既不是质数也不是合数
9、一个合数,其约数除了1和它本身外还能被其它的因数整除,这样的数叫做合数。
(插入)
有理数——比较:a=0,|a|=0 a>0,|a|=a a<0,|a|=-a
|a|>|b|,a<0,b<0,则a 加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法法则:a-b=a+(-b)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
除法法则:a÷b=a(1÷b)【b≠0】
角与线——对顶角相等
同一平面内,有且只有一条直线与已知直线垂直。
同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
垂直于同一直线的两条直线互相平行。
同位角相等/内错角相等/同旁内角互补:两直线平行
两直线平行:同位角相等/内错角相等/同旁内角互补。
直角=90°,180°<优角<360°,平角=180°,周角=360°
90°<钝角<180°,0°<锐角<90°
方程及不等式——解方程的两种基本方法:1.代入消元法 2.加减消元法
如果a>b,则a+c>b+c,a-c>b-c
如果a>b,c>0,则ac>bc
如果a>b,c<0,则ac
三角形及正多边形——外角+相邻内角=180°
1.三角形的一个外角等于与它不相邻的两个内角的和。
2.三角形的一个外角大于任何一个与它不相邻的内角。
3.三角形具有稳定性。
4.三角形任意两边之和大于第三边,两边之差小于第三边。
【n=多边形的边数】(n>0)
多边形的外角和:180°
多边形的内角和:180°*(n-2)
多边形的边数:n边
多边形对角线的条数:n(n-3)÷2
正多边形的各个内角:180°-360°÷n
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。
合数是指
①两个数之间的最大公因数只是1的那两个数的乘积;
②两个数之间的公约数不只是1,用其中一个约数乘以最小的数,能整除,乘出来的那个数就是合数
合数又名合成数,是满足以下任一(等价)条件的正整数:
1.是两个大于1 的整数之乘积;
2.拥有某大于1 而小于自身的因数(因子);
3.拥有至少三个因数(因子);
4.不是1 也不是素数(质数);
5.有至少一个素因子的非合数。
6、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。也就是说:由三个以上素数的乘积组成的合数,不可以视为两个素数的乘积!(也可以说除了1和它本身以外还有别的因数)合数
7、合数指的是:一个数除了1和它本身以外还有别的因数(第三个因数),这个数叫做合数。 8、“1”既不是质数也不是合数
9、一个合数,其约数除了1和它本身外还能被其它的因数整除,这样的数叫做合数。
(插入)
有理数——比较:a=0,|a|=0 a>0,|a|=a a<0,|a|=-a
|a|>|b|,a<0,b<0,则a 加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法法则:a-b=a+(-b)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
除法法则:a÷b=a(1÷b)【b≠0】
角与线——对顶角相等
同一平面内,有且只有一条直线与已知直线垂直。
同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
垂直于同一直线的两条直线互相平行。
同位角相等/内错角相等/同旁内角互补:两直线平行
两直线平行:同位角相等/内错角相等/同旁内角互补。
直角=90°,180°<优角<360°,平角=180°,周角=360°
90°<钝角<180°,0°<锐角<90°
方程及不等式——解方程的两种基本方法:1.代入消元法 2.加减消元法
如果a>b,则a+c>b+c,a-c>b-c
如果a>b,c>0,则ac>bc
如果a>b,c<0,则ac
1.三角形的一个外角等于与它不相邻的两个内角的和。
2.三角形的一个外角大于任何一个与它不相邻的内角。
3.三角形具有稳定性。
4.三角形任意两边之和大于第三边,两边之差小于第三边。
【n=多边形的边数】(n>0)
多边形的外角和:180°
多边形的内角和:180°*(n-2)
多边形的边数:n边
多边形对角线的条数:n(n-3)÷2
正多边形的各个内角:180°-360°÷n
全部回答
- 1楼网友:几近狂妄
- 2021-02-13 19:01
1)某商店规定一种商品一次购买不超过10件,每件5元;超过10
件,超过部分每件3元。如果甲比乙多付19元,那么甲乙各买了几件?
思考过程:
假设甲、乙购买的件数都不超过10件,那么甲比乙多付的钱一定是5的倍数,即5元、10元、15元、20元等,总之不会是19元。
假设甲、乙购买的件数都超过10件,那么甲比乙多付的钱一定是3的倍数,即3元、6元、9元、12元、15元、18元、21元等,总之也不会是19元。
所以一定是甲购买的件数超过10件,乙购买的件数不超过10件。那么甲花的钱一定超过50元,又根据“甲比乙多付19元”可以得出乙花的钱也一定超过31元,因此乙购买的件数只能是7件、8件、9件或10件。
假设乙购买7件,那么花35元,因此甲花54元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花4元,显然与“超过部分每件3元”矛盾。
假设乙购买8件,那么花40元,因此甲花59元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花9元,与“超过部分每件3元”不矛盾。
假设乙购买9件,那么花45元,因此甲花64元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花14元,显然又与“超过部分每件3元”矛盾。
假设乙购买10件,那么花50元,因此甲花69元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花19元,显然还是与“超过部分每件3元”矛盾。
所以,乙购买的件数一定是8件,那么甲购买的件数就是13件。
2) 第一次买了3个足球和8个篮球共值500元,第二次买了4个足球和5个篮球共值525元,求一个足球和篮球各多少元?
思考过程:
显然,1个足球比3个篮球贵25元,那么3个足球比9个篮球贵75元。
假设第一次买的9是篮球和8个篮球,那么只需要花425元,可以求出1个篮球25元。显然1个足球100元。
所以,1个篮球25元,1个足球100元。
3)称珠子
有9颗外形一模一样的珠子,其中有一颗稍重一点。用一架没有砝码的天平,至少称几次才能找出这颗珠子来?
思考过程:
先把9颗珠子分成3堆,任取其中2堆,分别放在天平两边。
假如天平平衡,那所求珠子必在另外1堆里;假如天平不平衡,则那所求珠子必在天平下倾那边。
再从有所求珠子的那堆里,任取2颗,分别放在天平两边。
假如天平平衡,那么所求珠子就一定是未放在天平上的那颗;假如天平不平衡,那么所求珠子就是天平下倾那边的那颗。
所以,至少要称2次,才能找出这颗珠子来。
- 2楼网友:山君与见山
- 2021-02-13 17:48
我暂时保留我的看法!
- 3楼网友:撞了怀
- 2021-02-13 16:10
问题是你今年几年级了,你就去搜搜一些在你们年龄段的问题不就行了柲
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯