双向晶闸管的工作特性
答案:1 悬赏:70 手机版
解决时间 2021-01-14 22:04
- 提问者网友:wodetian
- 2021-01-13 21:08
双向晶闸管的工作特性
最佳答案
- 五星知识达人网友:三千妖杀
- 2021-01-13 21:47
普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。
双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。
构造原理
尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。
双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。检测方法
下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。
1.判定T2极
由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。 ,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。
2.区分G极和T1极
(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。
(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。由此证明上述假定正确。否则是假定与实际不符,需再作出假定,重复以上测量。显见,在识别G、T1,的过程中,也就检查了双向晶闸管的触发能力。如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管于巳损坏。对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
典型应用
双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器(SSR)和固态接触器电路中。图5是由双向晶闸管构成的接近开关电路。R为门极限流电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过
干簧管的电流很小,时间仅几微秒,所以开关的寿命很长.
图6是过零触发型交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。
.判别各电极 用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其它两脚均不通,则此脚便是主电极T2。 找出T2极之后,剩下的两脚便是主电极T1和门极G3。测量这两脚之间的正反向电阻值,会测得两个均较小的电阻值。在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。 螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。 金属封装(TO–3)双向晶闸管的外壳为主电极T2。塑封(TO–220)双向晶徊管的中间引脚为主电极T2,该极通常与自带小散热片相连。 下图是几种双向晶闸管的引脚排列。 2.判别其好追问鼓励你追答谢谢哈
双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。
构造原理
尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。
双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。检测方法
下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。
1.判定T2极
由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。 ,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。
2.区分G极和T1极
(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。
(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。由此证明上述假定正确。否则是假定与实际不符,需再作出假定,重复以上测量。显见,在识别G、T1,的过程中,也就检查了双向晶闸管的触发能力。如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管于巳损坏。对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
典型应用
双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器(SSR)和固态接触器电路中。图5是由双向晶闸管构成的接近开关电路。R为门极限流电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过
干簧管的电流很小,时间仅几微秒,所以开关的寿命很长.
图6是过零触发型交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。
.判别各电极 用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其它两脚均不通,则此脚便是主电极T2。 找出T2极之后,剩下的两脚便是主电极T1和门极G3。测量这两脚之间的正反向电阻值,会测得两个均较小的电阻值。在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。 螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。 金属封装(TO–3)双向晶闸管的外壳为主电极T2。塑封(TO–220)双向晶徊管的中间引脚为主电极T2,该极通常与自带小散热片相连。 下图是几种双向晶闸管的引脚排列。 2.判别其好追问鼓励你追答谢谢哈
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯