圆的定义是什么
答案:1 悬赏:0 手机版
解决时间 2021-03-04 13:59
- 提问者网友:流星是天使的眼泪
- 2021-03-03 21:06
圆的定义是什么
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-03-03 22:10
问题一:圆形的定义 一条线段,其中一个端点绕着自己的另一个端点转一圈,所形成的轨迹就称为圆。问题二:圆的概念是怎样形成的 圆的来历
人最早是从太阳,从阴历十五的月亮得到圆的概念的,那么是什么人作出第一个圆的呢?
18000年前的山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从另一面钻。石器的尖是圆心,它的宽度的一半就是半径,这样以同一个半径和圆心一圈圈地转就可以钻出一个圆的孔。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
6000年前,半坡人就已经会造圆形的房顶了。古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物时,就把几段圆木垫在重物的下面滚着走,这样就比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆的木轮。约在4000年前,人们将圆的木轮固定在木架上,这就成了最初的车子。
会作圆并且真正了解圆的性质,却是在2000多年前,是由我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给圆下定义要早100年。问题三:圆的概念是怎样形成的 圆的来历
人最早是从太阳,从阴历十五的月亮得到圆的概念的,那么是什么人作出第一个圆的呢?
18000年前的山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从另一面钻。石器的尖是圆心,它的宽度的一半就是半径,这样以同一个半径和圆心一圈圈地转就可以钻出一个圆的孔。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
6000年前,半坡人就已经会造圆形的房顶了。古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物时,就把几段圆木垫在重物的下面滚着走,这样就比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆的木轮。约在4000年前,人们将圆的木轮固定在木架上,这就成了最初的车子。
会作圆并且真正了解圆的性质,却是在2000多年前,是由我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给圆下定义要早100年。问题四:圆的第二定义是什么 圆的第二定义,可以统一写成:平面内动点到定点和定直线距离之比为定值点的集合.
如:平面上到两定点的距离之和为定值:椭圆;(距离之和≤两定点的距离,则为“虚椭圆”)
平面上到两定点的距离之差为定值:双曲线(的一支);
平面上到两定点的距离之积为定值:四次曲线;
人最早是从太阳,从阴历十五的月亮得到圆的概念的,那么是什么人作出第一个圆的呢?
18000年前的山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从另一面钻。石器的尖是圆心,它的宽度的一半就是半径,这样以同一个半径和圆心一圈圈地转就可以钻出一个圆的孔。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
6000年前,半坡人就已经会造圆形的房顶了。古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物时,就把几段圆木垫在重物的下面滚着走,这样就比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆的木轮。约在4000年前,人们将圆的木轮固定在木架上,这就成了最初的车子。
会作圆并且真正了解圆的性质,却是在2000多年前,是由我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给圆下定义要早100年。问题三:圆的概念是怎样形成的 圆的来历
人最早是从太阳,从阴历十五的月亮得到圆的概念的,那么是什么人作出第一个圆的呢?
18000年前的山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从另一面钻。石器的尖是圆心,它的宽度的一半就是半径,这样以同一个半径和圆心一圈圈地转就可以钻出一个圆的孔。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
6000年前,半坡人就已经会造圆形的房顶了。古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物时,就把几段圆木垫在重物的下面滚着走,这样就比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆的木轮。约在4000年前,人们将圆的木轮固定在木架上,这就成了最初的车子。
会作圆并且真正了解圆的性质,却是在2000多年前,是由我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给圆下定义要早100年。问题四:圆的第二定义是什么 圆的第二定义,可以统一写成:平面内动点到定点和定直线距离之比为定值点的集合.
如:平面上到两定点的距离之和为定值:椭圆;(距离之和≤两定点的距离,则为“虚椭圆”)
平面上到两定点的距离之差为定值:双曲线(的一支);
平面上到两定点的距离之积为定值:四次曲线;
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯