互为反函数的函数具有相同的单调性、奇偶性请举例子具体介绍
答案:2 悬赏:10 手机版
解决时间 2021-03-07 07:02
- 提问者网友:锁深秋
- 2021-03-06 14:30
互为反函数的函数具有相同的单调性、奇偶性请举例子具体介绍
最佳答案
- 五星知识达人网友:長槍戰八方
- 2021-03-06 14:35
【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数在它的定义域上是单调的; (3)一个函数与它的反函数在相应区间上单调性一致; (4)偶函数一定不存在反函数,奇函数不一定存在反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】.(8)反函数是相互的 (9)定义域、值域相反对应法则互逆 (10)不是所有函数都有反函数如y=x的偶次方 例1:y=2^x的反函数是y=log2 x 都是增函数 都是非奇非偶函数例2:求函数y=3x的反函数 y=3x的定义域为R,值域为R 显然为奇函数且为增函数 由y=3x解得 x=1/3y将x,y互换,则所求y=3x-2的反函数是 y=1/3x 显然也为奇函数且为增函数======以下答案可供参考======供参考答案1:【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数在它的定义域上是单调的; (3)一个函数与它的反函数在相应区间上单调性一致; (4)偶函数一定不存在反函数,奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆 (10)不是所有函数都有反函数如y=x的偶次方 例1: y=2^x的反函数是y=log2 x 都是增函数 都是非奇非偶函数例2:求函数y=3x的反函数 y=3x的定义域为R,值域为R 显然为奇函数且为增函数 由y=3x解得 x=1/3y将x,y互换,则所求y=3x-2的反函数是 y=1/3x 显然也为奇函数且为增函数
全部回答
- 1楼网友:动情书生
- 2021-03-06 14:57
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯