解答题
已知抛物线y=x2-xcosθ+2sinθ-1(θ为参数).
(1)求此抛物线在x轴上两截距的平方和与θ的函数关系f(θ);
(2)求f(θ)的最小值和最大值.
解答题已知抛物线y=x2-xcosθ+2sinθ-1(θ为参数).(1)求此抛物线在x
答案:2 悬赏:10 手机版
解决时间 2021-12-28 23:47
- 提问者网友:最爱你的唇
- 2021-12-28 00:27
最佳答案
- 五星知识达人网友:夜风逐马
- 2021-12-28 01:55
解:(1)设x2-xcosθ+2sinθ-1=0的两根为x1,x2,
则x1+x2=cosθ,x1x2=2sinθ-1,
由题意知f(θ)=x12+x22=(x1+x2)2-2x1x2=cos2θ-4sinθ+2
=-(sinθ+2)2+7.
(2)∵f(θ)=-(sinθ+2)2+7,-1≤sinθ≤1,
∴当sinθ=-1时,f(θ)max=-1+7=6;当sinθ=1时,f(θ)min=-9+7=-2.
故f(θ)的最小值是-2,最大值是6.解析分析:(1)设x2-xcosθ+2sinθ-1=0的两根为x1,x2,由题意知f(θ)=x12+x22=(x1+x2)2-2x1x2=cos2θ-4sinθ+2=-(sinθ+2)2+7.(2)由f(θ)=-(sinθ+2)2+7,-1≤sinθ≤1,知当sinθ=-1时,f(θ)max=-1+7=6;当sinθ=1时,f(θ)min=-9+7=-2.点评:本题以三角函数为载体,考查抛物线的性质和应用,解题时要认真审题,仔细解答.
则x1+x2=cosθ,x1x2=2sinθ-1,
由题意知f(θ)=x12+x22=(x1+x2)2-2x1x2=cos2θ-4sinθ+2
=-(sinθ+2)2+7.
(2)∵f(θ)=-(sinθ+2)2+7,-1≤sinθ≤1,
∴当sinθ=-1时,f(θ)max=-1+7=6;当sinθ=1时,f(θ)min=-9+7=-2.
故f(θ)的最小值是-2,最大值是6.解析分析:(1)设x2-xcosθ+2sinθ-1=0的两根为x1,x2,由题意知f(θ)=x12+x22=(x1+x2)2-2x1x2=cos2θ-4sinθ+2=-(sinθ+2)2+7.(2)由f(θ)=-(sinθ+2)2+7,-1≤sinθ≤1,知当sinθ=-1时,f(θ)max=-1+7=6;当sinθ=1时,f(θ)min=-9+7=-2.点评:本题以三角函数为载体,考查抛物线的性质和应用,解题时要认真审题,仔细解答.
全部回答
- 1楼网友:像个废品
- 2021-12-28 03:10
谢谢解答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯