三个不同的数成等差数列,其和为6,如果将此三个数重新排列,它们又可以构成等比数列,求这个等差数列.
答案:2 悬赏:10 手机版
解决时间 2021-01-04 06:11
- 提问者网友:遁入空寂
- 2021-01-04 03:04
三个不同的数成等差数列,其和为6,如果将此三个数重新排列,它们又可以构成等比数列,求这个等差数列.
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-01-04 04:06
解:设这三个不同的数为a-d,a,a+d(d≠0)------------------------------(2分)
则有a-d+a+a+d=6,a=2---------------------------------(4分)
将这三个数重新排列2-d,2+d,2成等比数列(其他顺序本质上是一样的,可以不考虑)
∴(d+2)2=2(2-d))
解得d=-6,或d=0(舍去)----------------------------(8分)
∴这三个数为8,2,-4----------------------------------(10分)
这个等差数列为8,2,-4或-4,2,8----------------------------------(12分)解析分析:根据三个不同的数成等差数列,先假设这三个数,进而根据和为6,如果将此三个数重新排列,它们又可以构成等比数列,建立方程,即可求得这个等差数列.点评:本题重点考查等差数列与等比数列的结合,解题的关键是利用等差数列与等比数列的性质,建立方程.
则有a-d+a+a+d=6,a=2---------------------------------(4分)
将这三个数重新排列2-d,2+d,2成等比数列(其他顺序本质上是一样的,可以不考虑)
∴(d+2)2=2(2-d))
解得d=-6,或d=0(舍去)----------------------------(8分)
∴这三个数为8,2,-4----------------------------------(10分)
这个等差数列为8,2,-4或-4,2,8----------------------------------(12分)解析分析:根据三个不同的数成等差数列,先假设这三个数,进而根据和为6,如果将此三个数重新排列,它们又可以构成等比数列,建立方程,即可求得这个等差数列.点评:本题重点考查等差数列与等比数列的结合,解题的关键是利用等差数列与等比数列的性质,建立方程.
全部回答
- 1楼网友:低音帝王
- 2021-01-04 04:17
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯