x是绕x轴,这个函数是绕y=x.有没有高人
答案:1 悬赏:80 手机版
解决时间 2021-11-13 04:22
- 提问者网友:城市野鹿
- 2021-11-12 12:49
x是绕x轴,这个函数是绕y=x.有没有高人
最佳答案
- 五星知识达人网友:拾荒鲤
- 2021-11-12 13:07
用 “微元法”来
(1)(用扁圆台法)曲线 y = f(x) 在 [a,b]围绕直线 y = c 旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = π{[f(x)-c]^2}dx,
于是,曲线 y = f(x) 在 [a,b] 围绕直线 y = c 旋转的旋转体的体积为
V = ∫[a,b]dV(x) = π∫[a,b]{[f(x)-c]^2}dx.
(2)(用薄壳法)曲线 y = f(x) 与直线 x = a,x = b 及 y = 0 所围成的区域绕直线 x = c (此处仅处理c 不在 [a,b]内的情形,其它情形就复杂了)旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = 2π|(x-c)f(x)|dx,
于是,所求旋转体的体积为
V = ∫[a,b]dV(x) = 2π∫[a,b]|(x-c)f(x)|dx.
(1)(用扁圆台法)曲线 y = f(x) 在 [a,b]围绕直线 y = c 旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = π{[f(x)-c]^2}dx,
于是,曲线 y = f(x) 在 [a,b] 围绕直线 y = c 旋转的旋转体的体积为
V = ∫[a,b]dV(x) = π∫[a,b]{[f(x)-c]^2}dx.
(2)(用薄壳法)曲线 y = f(x) 与直线 x = a,x = b 及 y = 0 所围成的区域绕直线 x = c (此处仅处理c 不在 [a,b]内的情形,其它情形就复杂了)旋转,作图(此处略,由你自己做),在任意 x∈[a,b]处的旋转体的体积微元
dV(x) = 2π|(x-c)f(x)|dx,
于是,所求旋转体的体积为
V = ∫[a,b]dV(x) = 2π∫[a,b]|(x-c)f(x)|dx.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯