第四题线性代数求行列式的值
答案:2 悬赏:10 手机版
解决时间 2021-04-01 15:24
- 提问者网友:我一贱你就笑
- 2021-03-31 15:56
第四题线性代数求行列式的值
最佳答案
- 五星知识达人网友:千夜
- 2021-03-31 16:55
当a=b时,按第1列(或第1行)展开,得到
Dn = 2aDn-1-a^2Dn-2
Dn - aDn-1 = a(Dn-1 - aDn-2) = ⋯ = a^n-2(D2 - aD1) = a^n
aDn-1 - a^2Dn-2 = a^n
⋮
a^n-2D2 - a^n-1D1 = a^n
上述等式累加得到,Dn - 2a^n= (n-1)a^n
Dn = (n+1)a^n
当a不等于b时,
按第1列展开,
Dn=(a+b)Dn-1-abDn-2
则
Dn - aDn-1 = b(Dn-1 - aDn-2) = ⋯ = b^n-2(D2 - aD1) = b^n【1】
Dn - bDn-1 = a(Dn-1 - bDn-2) = ⋯ = a^n-2(D2 - bD1) = a^n【2】
【2】式乘以a-【1】式乘以b,得到
(a-b)Dn =a^n+1-b^n+1
Dn = (a^n+1-b^n+1)/(a-b)
Dn = 2aDn-1-a^2Dn-2
Dn - aDn-1 = a(Dn-1 - aDn-2) = ⋯ = a^n-2(D2 - aD1) = a^n
aDn-1 - a^2Dn-2 = a^n
⋮
a^n-2D2 - a^n-1D1 = a^n
上述等式累加得到,Dn - 2a^n= (n-1)a^n
Dn = (n+1)a^n
当a不等于b时,
按第1列展开,
Dn=(a+b)Dn-1-abDn-2
则
Dn - aDn-1 = b(Dn-1 - aDn-2) = ⋯ = b^n-2(D2 - aD1) = b^n【1】
Dn - bDn-1 = a(Dn-1 - bDn-2) = ⋯ = a^n-2(D2 - bD1) = a^n【2】
【2】式乘以a-【1】式乘以b,得到
(a-b)Dn =a^n+1-b^n+1
Dn = (a^n+1-b^n+1)/(a-b)
全部回答
- 1楼网友:青尢
- 2021-03-31 18:21
按第一行展开,然后建立三项递推关系追问我试试
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯