射影定理 的内容
答案:1 悬赏:30 手机版
解决时间 2021-05-14 15:36
- 提问者网友:孤凫
- 2021-05-14 06:21
谁能告诉我关于射影定理的内容 我老师说好像还有 关于射影定理的三个式子 帮忙啦 急急
最佳答案
- 五星知识达人网友:舍身薄凉客
- 2021-05-14 06:59
直角三角形射影定理 直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:
(1)(BD)^2;=AD·DC,
(2)(AB)^2;=AD·AC ,
(3)(BC)^2;=CD·AC 。
证明:在 △BAD与△BCD中,∠A+∠C=90°,∠DBC+∠C=90°,∴∠A=∠DBC,又∵∠BDA=∠BDC=90°,∴△BAD∽△CBD相似,∴ AD/BD=BD/CD,即(BD)²=AD·DC。其余类似可证。(也可以用勾股定理证明)
注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得:
(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,
即 (AB)^2;+(BC)^2;=(AC)^2;。
这就是勾股定理的结论。 [编辑本段]任意三角形射影定理 任意三角形射影定理又称“第一余弦定理”:
设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cosC+c·cosB,
b=c·cosA+a·cosC,
c=a·cosB+b·cosA。
注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。
证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且
BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。
证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA
=acosB+(asinB/sinA)cosA=a·cosB+b·cosA. 同理可证其它的。
公式 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:
(1)(BD)^2;=AD·DC,
(2)(AB)^2;=AD·AC ,
(3)(BC)^2;=CD·AC 。
证明:在 △BAD与△BCD中,∠A+∠C=90°,∠DBC+∠C=90°,∴∠A=∠DBC,又∵∠BDA=∠BDC=90°,∴△BAD∽△CBD相似,∴ AD/BD=BD/CD,即(BD)²=AD·DC。其余类似可证。(也可以用勾股定理证明)
注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得:
(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,
即 (AB)^2;+(BC)^2;=(AC)^2;。
这就是勾股定理的结论。 [编辑本段]任意三角形射影定理 任意三角形射影定理又称“第一余弦定理”:
设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cosC+c·cosB,
b=c·cosA+a·cosC,
c=a·cosB+b·cosA。
注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。
证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且
BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。
证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA
=acosB+(asinB/sinA)cosA=a·cosB+b·cosA. 同理可证其它的。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯