马上上高三了
细胞分裂这块一直没学好
有丝分裂 减数分裂 无丝分裂 什么期什么形态什么作用,区分,
还有 染色单体 同源染色体 姐妹染色单体,等等这些乱七八糟的帮忙捋一下,
谢谢好心的学长
高中生物 细胞分裂
答案:5 悬赏:0 手机版
解决时间 2021-03-19 14:08
- 提问者网友:精神病院里
- 2021-03-18 20:16
最佳答案
- 五星知识达人网友:迟山
- 2021-03-18 20:36
有丝分裂, 又称为间接分裂,由W. Fleming (1882)年首次发现于动物及E. Strasburger(1880)年发现于植物。特点是有纺锤体染色体出现,子染色体被平均分配到子细胞,这种分裂方式普遍见于高等动植物(动物和低等植物)。是真核细胞分裂产生体细胞的过程。细胞进行有丝分裂具有周期性。即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期。
有丝分裂是一个连续的过程,为了描述方便起见,习惯上按先后顺序划分为前期、中期、后期和末期四个时期,在前期和中期之间有时还划分出一个前中期。
前期 自分裂期开始到核膜解体为止的时期。间期细胞进入有丝分裂前期时,核的体积增大,由染色质构成的细染色线逐渐缩短变粗,形成染色体。因为染色体在间期中已经复制,所以每条染色体由两条染色单体组成。核仁在前期的后半渐渐消失。在前期末核膜破裂,于是染色体散于细胞质中。动物细胞有丝分裂前期时靠近核膜有两个中心体。每个中心体由一对中心粒和围绕它们的亮域,称为中心质或中心球所组成。由中心体放射出星体丝,即放射状微管。带有星体丝的两个中心体逐渐分开,移向相对的两极(图1)。这种分开过程推测是由于两个中心体之间的星体丝微管相互作用,更快地增长,结果把两个中心体(两对中心粒)推向两极,而于核膜破裂后终于形成两极之间的纺锤体。
前中期 自核膜破裂起到染色体排列在赤道面上为止。核膜的断片残留于细胞质中,与内质网不易区别,在纺锤体的周围有时可以看到它们。
前中期的主要过程是纺锤体的最终形成和染色体向赤道面的运动。纺锤体有两种类型:一为有星纺锤体,即两极各有一个以一对中心粒为核心的星体,见于绝大多数动物细胞和某些低等植物细胞。一为无星纺锤体。两极无星体,见于高等植物细胞(图2)。
曾经认为有星纺锤体含有三种纺锤丝,即三种微管。一种是星体微管,由星体散射出的微管;二是极微管,是由两极分别向相对一级方向伸展的微管,在赤道区来自两极的极微管互相重叠。现在认为极微管可能是由星体微管伸长形成的。三是着丝点微管,与着丝点联结的微管,亦称着丝点丝或牵引丝。着丝点是在染色体的着丝粒的两侧发育出的结构。有报告说着丝点有使微管蛋白聚合成微管的功能。无星纺锤体只有极微管与着丝点微管。
核膜破裂后染色体分散于细胞质中。每条染色体的两条染色单体其着丝点分别通过着丝点与两极相连。由于极微管和着丝微管之间的相互作用,染色体向赤道面运动。最后各种力达到平衡,染色体乃排列到赤道面上。
中期 从染色体排列到赤道面上,到它们的染色单体开始分向两极之前,这段时间称为中期。有时把前中期也包括在中期之内。中期染色体在赤道面形成所谓赤道板。从一端观察可见这些染色体在赤道面呈放射状排列,这时它们不是静止不动的,而是处于不断摆动的状态。中期染色体浓缩变粗,显示出该物种所特有的数目和形态。因此有丝分裂中期适于做染色体的形态、结构和数目的研究,适于核型分析。
后期每条染色体的两条姊妹染色单体分开并移向两极的时期。分开的染色体称为子染色体。子染色体到达两极时后期结束。染色单体的分开常从着丝点处开始,然后两个染色单体的臂逐渐分开。当它们完全分开后就向相对的两极移动。这种移动的速度依细胞种类而异,大体上在0.2~5微米/分之间。平均速度为 1微米/分。同一细胞内的各条染色体都差不多以同样速度同步地移向两极。子染色体向两极的移动是靠纺锤体的活动实现的。
末期从子染色体到达两极开始至形成两个子细胞为止称为末期。此期的主要过程是子核的形成和细胞体的分裂。子核的形成大体上是经历一个与前期相反的过程。到达两极的子染色体首先解螺旋而轮廓消失,全部子染色体构成一个大染色质块,在其周围集合核膜成分,融合而形成子核的核膜,随着子细胞核的重新组成,核内出现核仁。核仁的形成与特定染色体上的核仁组织区的活动有关。
细胞体的分裂称胞质分裂。动物和某些低等植物细胞的胞质分裂是以缢束或起沟的方式完成的。缢束的动力一般推测是由于赤道区的细胞质周边的微丝收缩的结果。微丝的紧缩使细胞在此区域产生缢束,缢束逐渐加深使细胞体最后一分为二。
高等植物细胞的胞质分裂是靠细胞板的形成。在末期,纺锤丝首先在靠近两极处解体消失,但中间区的纺锤丝保留下来,并且微管增加数量,向周围扩展,形成桶状结构,称为成膜体。与形成成膜体的同时,来自内质网和高尔基器的一些小泡和颗粒成分被运输到赤道区,它们经过改组融合而参加细胞板的形成。细胞板逐渐扩展到原来的细胞壁乃把细胞质一分为二(图3)。细胞板由两层薄膜组成,两层薄膜之间积累果胶质,发育成胞间层,两侧的薄膜积累纤维素,各自发育成子细胞的初生壁。
【细胞有丝分裂记忆口诀】有丝分裂并不难
间前中后末相连
前期:膜仁消失现两体
中期:形定数晰赤道齐
后期:点裂数加均两极
末期:两消两现重开始
动物细胞有丝分裂的过程,与植物细胞的基本相同.不同的特点是:
1.动物细胞有中心体,在细胞分裂的间期,中心体的两个中心粒各自产生了一个新的中心粒,因而细胞中有两组中心粒.在细胞分裂的过程中,两组中心粒分别移向细胞的两极.在这两组中心粒的周围,发出无数条放射线,两组中心粒之间的星射线形成了纺锤丝.
2.动物细胞分裂末期,细胞的中部并不形成细胞板,而是细胞膜从细胞的中部向内凹陷,最后把细胞缢裂成两部分,每部分都含有一个细胞核.这样,一个细胞就分裂成了两个子细胞
减数分裂 是指有性生殖的个体在形成生殖细胞过程中发生的一种特殊分裂方式。不同于有丝分裂和无丝分裂,减数分裂最终生成的生殖细胞中染色体数目减半。
减数分裂是进行有性生殖的生物,在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。在减数分裂过程中,染色体只复制一次,而细胞分裂两次。减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。
减数分裂(Meiosis) 范围是进行有性生殖的生物;时期是从原始生殖细胞发展到成熟生殖细胞;特点是DNA复制一次,而细胞连续分裂两次,形成单倍体的精子和卵子,通过受精作用又恢复二倍体,减数分裂过程中同源染色体间发生交换,使配子的遗传多样化,增加了后代的适应性,因此减数分裂不仅是保证生物种染色体数目稳定的机制,同且也是物种适应环境变化不断进化的机制。
【减数第一次分裂】
【前期】根据染色体的形态,可分为5个阶段:
〖细线期〗细胞核内出现细长、线状染色体,细胞核和核仁体积增大。每条染色体含有两条姐妹染色单体。
〖偶线期〗又称配对期。细胞内的同源染色体两两侧面紧密相进行配对,这一现象称作联会。由于配对的一对同源染色体中有4条染色单体,称四分体。
〖粗线期〗染色体连续缩短变粗,同时,四分体中的非姐妹染色单体之间发生了DNA的片断交换,从而导致了父母基因的互换,产生了基因重组,但每个染色单体上仍都具有完全相同的基因。
〖双线期〗发生交叉的染色单体开始分开。由于交叉常常不止发生在一个位点,因此,染色体呈现V、X、8、O等各种形状。
〖终变期〗(又叫浓缩期)染色体变成紧密凝集状态并向核的周围靠近。以后,核膜、核仁消失,最后形成纺锤体。
【中期】各成对的同源染色体双双移向细胞中央的赤道板,着丝点成对排列在赤道板两侧,细胞质中形成纺锤体。
【后期】由纺锤丝的牵引,使成对的同源染色体各自发生分离,并分别移向两极。
【末期】到达两极的同源染色体又聚集起来,重现核膜、核仁,然后细胞分裂为两个子细胞。这两个子细胞的染色体数目,只有原来的一半。重新生成的细胞紧接着发生第二次分裂。
注:
1.染色体复制是在的第一次分裂间期进行的,一旦复制完成,精原细胞就称作初级精母细胞。
2.一个初级精母细胞经过第一次减数分裂成为两个次级精母细胞,一个初级卵母细胞经过第一次减数分裂成为一个次级卵母细胞和一个极体。
3.减数第一次分裂的目的是实现同源染色体的分离,染色体数目减半。DNA分子数目减半。
【减数第二次分裂】
减数第二次分裂与减数第一次分裂紧接,也可能出现短暂停顿。染色体不再复制。每条染色体的着丝点分裂,姐妹染色单体分开,分别移向细胞的两极,有时还伴随细胞的变形。
【前期】染色体首先是散乱地分布于细胞之中。而后再次聚集,核膜、核仁再次消失,再次形成纺锤体。
【中期】染色体的着丝点排列到细胞中央赤道板上。注意此时已经不存在同源染色体了。
【后期】每条染色体的着丝点分离,两条姊妹染色单体也随之分开,成为两条染色体。在纺锤丝的牵引下,这两条染色体分别移向细胞的两极。
【末期】重现核膜、核仁,到达两极的染色体,分别进入两个子细胞。两个子细胞的染色体数目与初级性母细胞相比减少了一半。至此,第二次分裂结束。
注:
1.第二次减数分裂的目的是着丝点分裂,实现染色单体分离。分裂结果是染色体数目不变,DNA分子数目减半。
2.两个次级精母细胞经过第二次减数分裂成为四个精细胞,精细胞必须再经历一系列复杂的形态变化才成为精子。结果是一个精原细胞经过减数分裂和变态发育最终成为四个精子。
3.一个次级卵母细胞经过第二次减数分裂成为一个卵细胞和一个极体;第一次分裂产生的一个极体再分为两个极体。不久,三个极体都会退化消失。结果是一个卵原细胞经过减数分裂最终只成为一个卵细胞。
无丝分裂 是最早发现的一种细胞分裂方式,早在1841年就在鸡胚的血细胞中看到了。因为分裂时没有纺锤丝与染色体的变化,所以叫做无丝分裂。又因为这种分裂方式是细胞核和细胞质的直接分裂,所以又叫做直接分裂。
无丝分裂的早期,球形的细胞核和核仁都伸长。然后细胞核进一步伸长呈哑铃形,中央部分狭细。最后,细胞核分裂,这时细胞质也随着分裂,并且在滑面型内质网的参与下形成细胞膜。在无丝分裂中,核膜和核仁都不消失,没有染色体和纺锤丝的出现,当然也就看不到染色体复制的规律性变化。但是,这并不说明染色质没有发生深刻的变化,实际上染色质也要进行复制,并且细胞要增大。当细胞核体积增大一倍时,细胞核就发生分裂,核中的遗传物质就分配到子细胞中去。至于核中的遗传物质DNA是如何分配的,还有待进一步的研究。无丝分裂不能保证母细胞的遗传物质平均地分配到两个子细胞中去。
【优缺点】
由于无丝分裂比较简单,分裂后遗传物质不一定能平均分配给子细胞,这涉及到遗传的稳定性等问题。无丝分裂具有独特的优越性,比有丝分裂消耗能量少;分裂迅速并可能同时形成多个核;分裂时细胞核保持正常的生理功能;在不利条件下仍可进行细胞分裂。
染色单体: 复制时产生的染色体拷贝。此名字通常用来形容处于随后的细胞分裂期它们分开的之前的染色体。
从有丝分裂前期的早期到中期,染色体沿其长轴发生纵裂。这样被分成的二条染色体各称为染色单体。开始成为一对的染色单体两者并不分开,逐渐它们具有独立的基质,并在其中各自形成二条染色丝。而且染色单体往往出现互相关联的螺旋。这些螺旋的圈数在中期以前逐渐减少,并且着丝粒也开始分裂。从中期进入后期时,一对染色单体就互相完全分开,作为子染色体分别向相反的两极移动。减数分裂的二价染色体是由4条染色单体(四分染色体)产生的。
同源染色体 有丝分裂中期看到的长度和着丝点位置相同的两个染色体,或减数分裂时看到的两两配对的染色体。同源染色体一个来自父本,一个来自母本;它们的形态、大小和结构相同。由于每种生物染色体的数目是一定的,所以它们的同源染色体的对数也一定。例如豌豆有14条染色体,7对同源染色体。同源染色体上常含有不同的等位基因,减数分裂时又进行了交换并随机地分配到不同的性细胞中去,这对于遗传重组有重要意义。
在生物体的有性生殖过程中,有性生殖细胞是通过细胞分裂的一种——减数分裂形成的。在减数分裂的分裂间期,精原细胞的体积略微增大,染色体进行复制,成为初级精母细胞。复制后的每条染色体都含有两条姐妹染色体,这两条姐妹染色单体并列在一起,由同一个着丝点连接着。分裂期开始后不久,初级精母细胞中原来分散存在的染色体进行配对。而在减数第二次分裂过程中不存在同源染色体。
区分同源染色体与姐妹染色单体:姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的——由一条染色体复制形成的两条子染色体不是同源染色体,因为它们尽管形状大小相同,但它们并非一条来自父方、一条来自母方。
形态和结构相同的一对染色体,称为同源染色体
一对染色体与另一对形态结构不同的染色体,则互称为非同源染色体
姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的,在细胞分裂的间期、前期、中期成对存在,其大小、形态、结构及来源完全相同。细胞中每对姐妹染色单体之间的化学组成是一致的,DNA分子的结构相同,所包含的遗传信息也一样。在有丝分裂和减数第二次分裂的后期,每对姐妹染色单体都随着着丝点的分裂而彼此分开
姐妹染色单体是对原有染色单体概念的拓展和深化。运用这一概念能够明析地反映出有丝分裂、减数分裂过程中染色体的行为特点,比笼统的染色单体的提法更形象、具体和贴切。
一般来说,染色单体应包括姐妹染色单体,但二者并非等同关系。
其一,姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的,在细胞分裂的间期、前期、中期成对存在,其大小、形态、结构及来源完全相同,就像连体的同卵双胞胎姐妹婴儿;而染色单体应指细胞中全部的姐妹染色单体,它们的大小、形态及来源不一定相同。因此,对姐妹染色单体在细胞中的数量应以几对数来叙述,就像几对同源染色体一样,而不宜用个数。
其二,细胞中每对姐妹染色单体之间的化学组成是一致的,DNA分子的结构相同,所包含的遗传信息也一样,而染色单体之间所携带的DNA分子结构及遗传信息就不一定相同了。
其三,在有丝分裂和减数第二次分裂的后期,每对姐妹染色单体都随着着丝点的分裂而彼此分开(就像连体的同卵双胞胎婴儿经手术后形成两个独立的人一样)
有丝分裂是一个连续的过程,为了描述方便起见,习惯上按先后顺序划分为前期、中期、后期和末期四个时期,在前期和中期之间有时还划分出一个前中期。
前期 自分裂期开始到核膜解体为止的时期。间期细胞进入有丝分裂前期时,核的体积增大,由染色质构成的细染色线逐渐缩短变粗,形成染色体。因为染色体在间期中已经复制,所以每条染色体由两条染色单体组成。核仁在前期的后半渐渐消失。在前期末核膜破裂,于是染色体散于细胞质中。动物细胞有丝分裂前期时靠近核膜有两个中心体。每个中心体由一对中心粒和围绕它们的亮域,称为中心质或中心球所组成。由中心体放射出星体丝,即放射状微管。带有星体丝的两个中心体逐渐分开,移向相对的两极(图1)。这种分开过程推测是由于两个中心体之间的星体丝微管相互作用,更快地增长,结果把两个中心体(两对中心粒)推向两极,而于核膜破裂后终于形成两极之间的纺锤体。
前中期 自核膜破裂起到染色体排列在赤道面上为止。核膜的断片残留于细胞质中,与内质网不易区别,在纺锤体的周围有时可以看到它们。
前中期的主要过程是纺锤体的最终形成和染色体向赤道面的运动。纺锤体有两种类型:一为有星纺锤体,即两极各有一个以一对中心粒为核心的星体,见于绝大多数动物细胞和某些低等植物细胞。一为无星纺锤体。两极无星体,见于高等植物细胞(图2)。
曾经认为有星纺锤体含有三种纺锤丝,即三种微管。一种是星体微管,由星体散射出的微管;二是极微管,是由两极分别向相对一级方向伸展的微管,在赤道区来自两极的极微管互相重叠。现在认为极微管可能是由星体微管伸长形成的。三是着丝点微管,与着丝点联结的微管,亦称着丝点丝或牵引丝。着丝点是在染色体的着丝粒的两侧发育出的结构。有报告说着丝点有使微管蛋白聚合成微管的功能。无星纺锤体只有极微管与着丝点微管。
核膜破裂后染色体分散于细胞质中。每条染色体的两条染色单体其着丝点分别通过着丝点与两极相连。由于极微管和着丝微管之间的相互作用,染色体向赤道面运动。最后各种力达到平衡,染色体乃排列到赤道面上。
中期 从染色体排列到赤道面上,到它们的染色单体开始分向两极之前,这段时间称为中期。有时把前中期也包括在中期之内。中期染色体在赤道面形成所谓赤道板。从一端观察可见这些染色体在赤道面呈放射状排列,这时它们不是静止不动的,而是处于不断摆动的状态。中期染色体浓缩变粗,显示出该物种所特有的数目和形态。因此有丝分裂中期适于做染色体的形态、结构和数目的研究,适于核型分析。
后期每条染色体的两条姊妹染色单体分开并移向两极的时期。分开的染色体称为子染色体。子染色体到达两极时后期结束。染色单体的分开常从着丝点处开始,然后两个染色单体的臂逐渐分开。当它们完全分开后就向相对的两极移动。这种移动的速度依细胞种类而异,大体上在0.2~5微米/分之间。平均速度为 1微米/分。同一细胞内的各条染色体都差不多以同样速度同步地移向两极。子染色体向两极的移动是靠纺锤体的活动实现的。
末期从子染色体到达两极开始至形成两个子细胞为止称为末期。此期的主要过程是子核的形成和细胞体的分裂。子核的形成大体上是经历一个与前期相反的过程。到达两极的子染色体首先解螺旋而轮廓消失,全部子染色体构成一个大染色质块,在其周围集合核膜成分,融合而形成子核的核膜,随着子细胞核的重新组成,核内出现核仁。核仁的形成与特定染色体上的核仁组织区的活动有关。
细胞体的分裂称胞质分裂。动物和某些低等植物细胞的胞质分裂是以缢束或起沟的方式完成的。缢束的动力一般推测是由于赤道区的细胞质周边的微丝收缩的结果。微丝的紧缩使细胞在此区域产生缢束,缢束逐渐加深使细胞体最后一分为二。
高等植物细胞的胞质分裂是靠细胞板的形成。在末期,纺锤丝首先在靠近两极处解体消失,但中间区的纺锤丝保留下来,并且微管增加数量,向周围扩展,形成桶状结构,称为成膜体。与形成成膜体的同时,来自内质网和高尔基器的一些小泡和颗粒成分被运输到赤道区,它们经过改组融合而参加细胞板的形成。细胞板逐渐扩展到原来的细胞壁乃把细胞质一分为二(图3)。细胞板由两层薄膜组成,两层薄膜之间积累果胶质,发育成胞间层,两侧的薄膜积累纤维素,各自发育成子细胞的初生壁。
【细胞有丝分裂记忆口诀】有丝分裂并不难
间前中后末相连
前期:膜仁消失现两体
中期:形定数晰赤道齐
后期:点裂数加均两极
末期:两消两现重开始
动物细胞有丝分裂的过程,与植物细胞的基本相同.不同的特点是:
1.动物细胞有中心体,在细胞分裂的间期,中心体的两个中心粒各自产生了一个新的中心粒,因而细胞中有两组中心粒.在细胞分裂的过程中,两组中心粒分别移向细胞的两极.在这两组中心粒的周围,发出无数条放射线,两组中心粒之间的星射线形成了纺锤丝.
2.动物细胞分裂末期,细胞的中部并不形成细胞板,而是细胞膜从细胞的中部向内凹陷,最后把细胞缢裂成两部分,每部分都含有一个细胞核.这样,一个细胞就分裂成了两个子细胞
减数分裂 是指有性生殖的个体在形成生殖细胞过程中发生的一种特殊分裂方式。不同于有丝分裂和无丝分裂,减数分裂最终生成的生殖细胞中染色体数目减半。
减数分裂是进行有性生殖的生物,在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。在减数分裂过程中,染色体只复制一次,而细胞分裂两次。减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。
减数分裂(Meiosis) 范围是进行有性生殖的生物;时期是从原始生殖细胞发展到成熟生殖细胞;特点是DNA复制一次,而细胞连续分裂两次,形成单倍体的精子和卵子,通过受精作用又恢复二倍体,减数分裂过程中同源染色体间发生交换,使配子的遗传多样化,增加了后代的适应性,因此减数分裂不仅是保证生物种染色体数目稳定的机制,同且也是物种适应环境变化不断进化的机制。
【减数第一次分裂】
【前期】根据染色体的形态,可分为5个阶段:
〖细线期〗细胞核内出现细长、线状染色体,细胞核和核仁体积增大。每条染色体含有两条姐妹染色单体。
〖偶线期〗又称配对期。细胞内的同源染色体两两侧面紧密相进行配对,这一现象称作联会。由于配对的一对同源染色体中有4条染色单体,称四分体。
〖粗线期〗染色体连续缩短变粗,同时,四分体中的非姐妹染色单体之间发生了DNA的片断交换,从而导致了父母基因的互换,产生了基因重组,但每个染色单体上仍都具有完全相同的基因。
〖双线期〗发生交叉的染色单体开始分开。由于交叉常常不止发生在一个位点,因此,染色体呈现V、X、8、O等各种形状。
〖终变期〗(又叫浓缩期)染色体变成紧密凝集状态并向核的周围靠近。以后,核膜、核仁消失,最后形成纺锤体。
【中期】各成对的同源染色体双双移向细胞中央的赤道板,着丝点成对排列在赤道板两侧,细胞质中形成纺锤体。
【后期】由纺锤丝的牵引,使成对的同源染色体各自发生分离,并分别移向两极。
【末期】到达两极的同源染色体又聚集起来,重现核膜、核仁,然后细胞分裂为两个子细胞。这两个子细胞的染色体数目,只有原来的一半。重新生成的细胞紧接着发生第二次分裂。
注:
1.染色体复制是在的第一次分裂间期进行的,一旦复制完成,精原细胞就称作初级精母细胞。
2.一个初级精母细胞经过第一次减数分裂成为两个次级精母细胞,一个初级卵母细胞经过第一次减数分裂成为一个次级卵母细胞和一个极体。
3.减数第一次分裂的目的是实现同源染色体的分离,染色体数目减半。DNA分子数目减半。
【减数第二次分裂】
减数第二次分裂与减数第一次分裂紧接,也可能出现短暂停顿。染色体不再复制。每条染色体的着丝点分裂,姐妹染色单体分开,分别移向细胞的两极,有时还伴随细胞的变形。
【前期】染色体首先是散乱地分布于细胞之中。而后再次聚集,核膜、核仁再次消失,再次形成纺锤体。
【中期】染色体的着丝点排列到细胞中央赤道板上。注意此时已经不存在同源染色体了。
【后期】每条染色体的着丝点分离,两条姊妹染色单体也随之分开,成为两条染色体。在纺锤丝的牵引下,这两条染色体分别移向细胞的两极。
【末期】重现核膜、核仁,到达两极的染色体,分别进入两个子细胞。两个子细胞的染色体数目与初级性母细胞相比减少了一半。至此,第二次分裂结束。
注:
1.第二次减数分裂的目的是着丝点分裂,实现染色单体分离。分裂结果是染色体数目不变,DNA分子数目减半。
2.两个次级精母细胞经过第二次减数分裂成为四个精细胞,精细胞必须再经历一系列复杂的形态变化才成为精子。结果是一个精原细胞经过减数分裂和变态发育最终成为四个精子。
3.一个次级卵母细胞经过第二次减数分裂成为一个卵细胞和一个极体;第一次分裂产生的一个极体再分为两个极体。不久,三个极体都会退化消失。结果是一个卵原细胞经过减数分裂最终只成为一个卵细胞。
无丝分裂 是最早发现的一种细胞分裂方式,早在1841年就在鸡胚的血细胞中看到了。因为分裂时没有纺锤丝与染色体的变化,所以叫做无丝分裂。又因为这种分裂方式是细胞核和细胞质的直接分裂,所以又叫做直接分裂。
无丝分裂的早期,球形的细胞核和核仁都伸长。然后细胞核进一步伸长呈哑铃形,中央部分狭细。最后,细胞核分裂,这时细胞质也随着分裂,并且在滑面型内质网的参与下形成细胞膜。在无丝分裂中,核膜和核仁都不消失,没有染色体和纺锤丝的出现,当然也就看不到染色体复制的规律性变化。但是,这并不说明染色质没有发生深刻的变化,实际上染色质也要进行复制,并且细胞要增大。当细胞核体积增大一倍时,细胞核就发生分裂,核中的遗传物质就分配到子细胞中去。至于核中的遗传物质DNA是如何分配的,还有待进一步的研究。无丝分裂不能保证母细胞的遗传物质平均地分配到两个子细胞中去。
【优缺点】
由于无丝分裂比较简单,分裂后遗传物质不一定能平均分配给子细胞,这涉及到遗传的稳定性等问题。无丝分裂具有独特的优越性,比有丝分裂消耗能量少;分裂迅速并可能同时形成多个核;分裂时细胞核保持正常的生理功能;在不利条件下仍可进行细胞分裂。
染色单体: 复制时产生的染色体拷贝。此名字通常用来形容处于随后的细胞分裂期它们分开的之前的染色体。
从有丝分裂前期的早期到中期,染色体沿其长轴发生纵裂。这样被分成的二条染色体各称为染色单体。开始成为一对的染色单体两者并不分开,逐渐它们具有独立的基质,并在其中各自形成二条染色丝。而且染色单体往往出现互相关联的螺旋。这些螺旋的圈数在中期以前逐渐减少,并且着丝粒也开始分裂。从中期进入后期时,一对染色单体就互相完全分开,作为子染色体分别向相反的两极移动。减数分裂的二价染色体是由4条染色单体(四分染色体)产生的。
同源染色体 有丝分裂中期看到的长度和着丝点位置相同的两个染色体,或减数分裂时看到的两两配对的染色体。同源染色体一个来自父本,一个来自母本;它们的形态、大小和结构相同。由于每种生物染色体的数目是一定的,所以它们的同源染色体的对数也一定。例如豌豆有14条染色体,7对同源染色体。同源染色体上常含有不同的等位基因,减数分裂时又进行了交换并随机地分配到不同的性细胞中去,这对于遗传重组有重要意义。
在生物体的有性生殖过程中,有性生殖细胞是通过细胞分裂的一种——减数分裂形成的。在减数分裂的分裂间期,精原细胞的体积略微增大,染色体进行复制,成为初级精母细胞。复制后的每条染色体都含有两条姐妹染色体,这两条姐妹染色单体并列在一起,由同一个着丝点连接着。分裂期开始后不久,初级精母细胞中原来分散存在的染色体进行配对。而在减数第二次分裂过程中不存在同源染色体。
区分同源染色体与姐妹染色单体:姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的——由一条染色体复制形成的两条子染色体不是同源染色体,因为它们尽管形状大小相同,但它们并非一条来自父方、一条来自母方。
形态和结构相同的一对染色体,称为同源染色体
一对染色体与另一对形态结构不同的染色体,则互称为非同源染色体
姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的,在细胞分裂的间期、前期、中期成对存在,其大小、形态、结构及来源完全相同。细胞中每对姐妹染色单体之间的化学组成是一致的,DNA分子的结构相同,所包含的遗传信息也一样。在有丝分裂和减数第二次分裂的后期,每对姐妹染色单体都随着着丝点的分裂而彼此分开
姐妹染色单体是对原有染色单体概念的拓展和深化。运用这一概念能够明析地反映出有丝分裂、减数分裂过程中染色体的行为特点,比笼统的染色单体的提法更形象、具体和贴切。
一般来说,染色单体应包括姐妹染色单体,但二者并非等同关系。
其一,姐妹染色单体是由一个着丝点连着的并行的两条染色单体,是在细胞分裂的间期由同一条染色体经复制后形成的,在细胞分裂的间期、前期、中期成对存在,其大小、形态、结构及来源完全相同,就像连体的同卵双胞胎姐妹婴儿;而染色单体应指细胞中全部的姐妹染色单体,它们的大小、形态及来源不一定相同。因此,对姐妹染色单体在细胞中的数量应以几对数来叙述,就像几对同源染色体一样,而不宜用个数。
其二,细胞中每对姐妹染色单体之间的化学组成是一致的,DNA分子的结构相同,所包含的遗传信息也一样,而染色单体之间所携带的DNA分子结构及遗传信息就不一定相同了。
其三,在有丝分裂和减数第二次分裂的后期,每对姐妹染色单体都随着着丝点的分裂而彼此分开(就像连体的同卵双胞胎婴儿经手术后形成两个独立的人一样)
全部回答
- 1楼网友:鱼芗
- 2021-03-18 23:16
背书上的图.解释
- 2楼网友:白昼之月
- 2021-03-18 23:03
必然选d a 高中生物必修一我们学过 细胞周期指的是 连续 进行分裂的细胞,从一次分裂完成到下一次分裂完成为止的过程。强调 连续分裂。进行减数分裂的生殖细胞为使子细胞染色体数目减半,不可能连续分裂,所以这类细胞不了能具有细胞周期 b 无论是有丝分裂,减一分,还是减二分,在中期染色体的着丝点都会排列在细胞中心的平面上,这个平面成为 赤道板。显然这是个抽象的概念,而不是真实存在的某个结构;细胞板是植物细胞有丝分裂后期在赤道板的位置出现的结构,是为将来形成细胞壁。动物细胞中显然不可能有,这句话对 c 你应该知道生物学中我们习惯用类似aa的形式表示 等位基因,而等位基因在排除前期交叉互换的影响下,必然位于同源染色体上。而同源染色体在减一分后期就分开了。 d 有丝分裂的前期dna经过复制,包括色盲基因在内的基因都会加倍,在有丝分裂后期分别进入两个子细胞,正确 我说这种题都不会做,你是就没听过课吧……
- 3楼网友:等灯
- 2021-03-18 21:57
不能给你一下子讲清楚
把教材好好看
最重要的是把每个过程的图画下来
- 4楼网友:忘川信使
- 2021-03-18 21:41
必修1最后有丝分裂有图片的,最好一个一个好好捋一遍,我当年挣扎了一会儿就忘不了了,可以和我探讨,刚考完
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯