1、对于任意正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)值一定是( )的倍数
2、求(1+1/2)(1+1/2×2)(1+1/2×4)(1+1/2×8)的值
3、
1、对于任意正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)值一定是( )的倍数
2、求(1+1/2)(1+1/2×2)(1+1/2×4)(1+1/2×8)的值
3、
1、对于任意正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)值一定是( 10)的倍数
(3n+1)(3n-1)-(3-n)(3+n)=9n²-1-9+n²=10n²-10
2、求(1+1/2)(1+1/2×2)(1+1/2×4)(1+1/2×8)的值
(1+1/2)(1+1/2×2)(1+1/2×4)(1+1/2×8)
=(1-1/2)(1+1/2)(1+1/2×2)(1+1/2×4)(1+1/2×8)/(1-1/2)
=(1-1/2×2)(1+1/2×2)(1+1/2×4)(1+1/2×8)/(1-1/2)
=(1-1/2×4)(1+1/2×4)(1+1/2×8)/(1-1/2)
=(1-1/2×8)(1+1/2×8)/(1-1/2)
=(1-1/2×16)/(1-1/2)
=(31/32)/(1/2)=31/16
3、
2010×2010-2009×2009+2008×2008-2007×2007+2006×2006+…+2×2-1×1
=(2010+2009)(2010-2009)+(2008+2007)(2008-2007)+(2006+2005)(2006-2005)+……+(2+1)(2-1)
=2010+2009+2008+2007+2006+2005+……+2+1
=(2010+1)×2010÷2=2021055
1、把(3n+1)(3n-1)-(3-n)(3+n)化简得:10n2-10=10(n+1)(n-1)所以它一定是10或(n+1)或(n-1)的倍数
2、运算表达不清如果括号间是乘结果是1/64,如果是其他运算结果应另计
3、它就是(2n)2-(2n-1)2化简得:4n-1即原题为4019+4015+4011+……+7+3=(4019+3)1005/2=2021055