为什么一个数各个位数之和能被3整除,就是三的倍数
答案:2 悬赏:40 手机版
解决时间 2021-03-19 14:15
- 提问者网友:容嬷嬷拿针来
- 2021-03-18 20:13
为什么一个数各个位数之和能被3整除,就是三的倍数
最佳答案
- 五星知识达人网友:逃夭
- 2021-03-18 21:43
比如3位数abc,
100*a+10*b+c=99a+9b+(a+b+c)
99a,9b,肯定是3的倍数,
如果a+b+c能被3整除,那100*a+10*b+c就能被3整除 ,
也就是三位数abc就是3的倍数 。
其它位数,也是一样,因为除个位数外,其它位数所表达的数,都可以拆成9的倍数和数字本身。
100*a+10*b+c=99a+9b+(a+b+c)
99a,9b,肯定是3的倍数,
如果a+b+c能被3整除,那100*a+10*b+c就能被3整除 ,
也就是三位数abc就是3的倍数 。
其它位数,也是一样,因为除个位数外,其它位数所表达的数,都可以拆成9的倍数和数字本身。
全部回答
- 1楼网友:鱼芗
- 2021-03-18 22:26
假设一个2位数ab(值是a*10+b),可以被3整除,即 a*10+b 可以被3整除,又知道 a*3 可以被3整除,那么 a*10+b-a*3-a*3-a*3就可以被3整除(a*10+b-a*3-a*3-a*3=a+b)。对于3位数或其他位数都是这么证明。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯