对于抛物线C: y2=4x,我们称满足y02<4x0的点M(x0, y0)在抛物线的内部, 若点M(x0, y0)在
答案:2 悬赏:30 手机版
解决时间 2021-04-17 09:23
- 提问者网友:玫瑰园
- 2021-04-16 23:25
对于抛物线C: y2= 4x, 我们称满足y02<4x0的点M(x0, y0)在抛物线的内部, 若点M(x0, y0)在抛物线的内部, 则直线l: y0y="2(x+" x0)与CA.恰有一个公共点B.恰有二个公共点C.有一个公共点也可能有二个公共点D.没有公共点
最佳答案
- 五星知识达人网友:逐風
- 2020-03-03 19:20
D解析主要考查了抛物线的简单性质、一元二次方程的根与系数的关系等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想。解:将直线方程代入抛物线的方程,消去x,得y2-2y0y+4x0=0,∴△=4y02-4×4x0=4(y02-4x0).∵y02<4x0,∴△<0,直线和抛物线无公共点.故选D。
思路拓展:对于直线与圆锥曲线的位置关系的问题,常需把直线与圆锥曲线方程联立根据判别式,断定直线与圆锥曲线的位置.
思路拓展:对于直线与圆锥曲线的位置关系的问题,常需把直线与圆锥曲线方程联立根据判别式,断定直线与圆锥曲线的位置.
全部回答
- 1楼网友:洒脱疯子
- 2020-05-12 08:50
这下我知道了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯