如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.
(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.
(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.
如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.(2)若AB=AC,且△B
答案:2 悬赏:60 手机版
解决时间 2021-03-25 11:25
- 提问者网友:寂寞撕碎了回忆
- 2021-03-24 15:07
最佳答案
- 五星知识达人网友:千杯敬自由
- 2020-04-12 01:41
解:(1)∵∠A=50°,
∴∠ABC=∠C=65°,
又∵DE垂直平分AB,
∴∠A=∠ABD=50°,
∴∠DBC=∠ABC-∠ABD=15°.
(2)∵DE是AB的垂直平分线,
∴AD=BD,AE=BE,
∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=18cm.
∵△ABC的周长=30cm,
∴AB=30-18=12cm,
∴BE=AE=6cm.解析分析:(1)已知∠A=50°,易求∠ABC的度数.又因为DE垂直平分AB根据线段垂直平分线的性质易求出∠DBC的度数.
(2)同样利用线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等可解.点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.
∴∠ABC=∠C=65°,
又∵DE垂直平分AB,
∴∠A=∠ABD=50°,
∴∠DBC=∠ABC-∠ABD=15°.
(2)∵DE是AB的垂直平分线,
∴AD=BD,AE=BE,
∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=18cm.
∵△ABC的周长=30cm,
∴AB=30-18=12cm,
∴BE=AE=6cm.解析分析:(1)已知∠A=50°,易求∠ABC的度数.又因为DE垂直平分AB根据线段垂直平分线的性质易求出∠DBC的度数.
(2)同样利用线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等可解.点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.
全部回答
- 1楼网友:空山清雨
- 2019-12-25 01:00
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯