若实数a、b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值是多少?
答案:3 悬赏:60 手机版
解决时间 2021-07-24 13:01
- 提问者网友:精神病院里
- 2021-07-24 09:39
若实数a、b满足ab-4a-b+1=0(a>1),则(a+1)(b+2)的最小值是多少?
最佳答案
- 五星知识达人网友:人類模型
- 2021-07-24 10:36
ab-4a-b+1=0, b=(4a-1)/(a-1)
(a+1)(b+2))=(a+1)(6a-3)/(a-1)
=3(a+1)(2a-1)/(a-1)
=3[(a-1)+2][2(a-1)+1]/(a-1)
=3[2(a-1)^2+5(a-1)+2]/(a-1)
=3[2(a-1) +2/(a-1)+5]
=15+6[(a-1)+1/(a-1)]
>=15+6*2=27
最小值 =27
(a+1)(b+2))=(a+1)(6a-3)/(a-1)
=3(a+1)(2a-1)/(a-1)
=3[(a-1)+2][2(a-1)+1]/(a-1)
=3[2(a-1)^2+5(a-1)+2]/(a-1)
=3[2(a-1) +2/(a-1)+5]
=15+6[(a-1)+1/(a-1)]
>=15+6*2=27
最小值 =27
全部回答
- 1楼网友:蕴藏春秋
- 2021-07-24 12:34
ab-4a-b+1=0 a=(b-1)/(b-4)=1+3/(b-4), a>1,
3/(b-4)>0 b>4. (a-1)(b-4)=3 (a>1,b>4)
y=(a-1+2)(b-4+6)
=3+6(a-1)+2(b-4)+12=15+2(3(a-1)+(b-4))
3(a-1)+(b-4)>=2根号[3(a-1)(b-4)=6
y=(a-1+2)(b-4+6)
=3+6(a-1)+2(b-4)+12=15+2(3(a-1)+(b-4))>=15+2*6=27
所以最小值是27
- 2楼网友:十鸦
- 2021-07-24 11:59
ab-4a-b+1=0
b(a-1)+(4-4a)-3=0
(b-4)(a-1)=3
由于a>1
所以b>4
ab+2a+b+2=ab-4a-b+1+6a+2b+1
=6a+2b+1=2√3ab+1
当6a=2b时有最小值
将b=3a代入方程
ab-4a-b+1=0
3a^2-7a+1-0
因为a>1
所以
a=(7+√35)/2
再代入6a+2b+1中
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯