单选题平面上有四点,连接其中的两点的一切直线中的任何两条直线不重合、不平行、不垂直,从
答案:2 悬赏:40 手机版
解决时间 2021-04-14 03:51
- 提问者网友:浮克旳回音
- 2021-04-13 05:28
单选题
平面上有四点,连接其中的两点的一切直线中的任何两条直线不重合、不平行、不垂直,从每一点出发,向其他三点作成的一切直线作垂线,则这些垂线的交点个数最多为A.66B.60C.52D.44
最佳答案
- 五星知识达人网友:鱼芗
- 2021-04-13 07:06
C解析分析:本题得从正面利用分类原理分类来做,先先研究从共A点的三条垂线与从它三点出发的垂线的交点个数,再求出与垂线的交点的个数,对其它点可用同理求出,最后加在一起.解答:先研究从共A点的三条垂线与从它三点出发的垂线的交点个数是:从A点出发的三个垂线有1个交点,从A点出发的三个垂线与从B点出发的三个垂线中各有一条线与CD垂直,故从A出发的与CD垂直的直线与B点出发的三个垂线有两个交点,从A点出发的另两个垂线与B点出发的三个垂线各有三个交点,故从A,B出发的垂线的交点个数为2+3+3=8,同理从A,C; A,D出发的垂线的交点个数也为2+3+3=8,从B,D;B,C;C,D出发的垂线交点个数也为8个,而各点出发的三条垂线本身一个交点,由此各得1+1+1+1+8×6=52.故选C.点评:本题考查了计数原理在平面几何中的应用,根据题意排除法不易做,正面利用分类原理虽然麻烦,但是不易出错,注意按一定顺序去求,考查了分析和解决问题的能力.
全部回答
- 1楼网友:掌灯师
- 2021-04-13 07:42
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯