NEWRB, neurons = 0, SSE = 2.70012
net1 =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
targetConnect: [0 0]
numOutputs: 1 (read-only)
numTargets: 0 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
targets: {1x2 cell} containing no targets
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
initFcn: (none)
performFcn: 'mse'
trainFcn: (none)
parameters:
adaptParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
userdata: (user stuff)
y1 =
26.7693
delta1 =
0.1839
如何看MATLAB运行神经网络的结果
答案:2 悬赏:60 手机版
解决时间 2021-02-24 22:58
- 提问者网友:伴风望海
- 2021-02-24 09:28
最佳答案
- 五星知识达人网友:woshuo
- 2021-02-24 10:21
如何看MATLAB运行神经网络的结果
从图中Neural Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。
从图中Neural Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。
全部回答
- 1楼网友:不如潦草
- 2021-02-24 10:37
gaoptimset用法有误,matlab认为其为一个字符串变量。检查你的程序,要学会根据matlab反馈的报错信息,来确定错误所在。
遗传算法(genetic algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯