将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?
假设在锻压过程中圆柱的体积保持不变,那么在这个问题中有如下的等量关系:锻压前的体积=锻压后的体积.
解:设锻压后圆柱的高为x厘米,填写下表:
锻压前锻压后底面半径510高369体积900π900π根据等量关系,列出方程:________
解得x=________
答:高变成了________厘米.
将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?假设在锻压过程中圆柱的体积保持不变,那么在这个问题中有如
答案:2 悬赏:10 手机版
解决时间 2022-01-01 05:09
- 提问者网友:动次大次蹦擦擦
- 2021-12-31 17:55
最佳答案
- 五星知识达人网友:有你哪都是故乡
- 2021-12-31 18:02
π×(10÷2)2×36=π×(20÷2)2×x 9 9解析分析:由图中可得锻压前后圆柱的底面半径,高,体积为底面积×高,根据两个圆柱的体积相等可得相关方程,求解即可.解答:锻压前的底面半径为10÷2=5cm,锻压后的半径为20÷2=10cm;
锻压前的高为36cm,锻压后的高为xcm;
锻压前的体积为π×(10÷2)2×36;锻压后的体积为π×(20÷2)2×x;
∴列出方程为π×(10÷2)2×36=π×(20÷2)2×x,
解得x=9,
答:高变成了9厘米.
故
锻压前的高为36cm,锻压后的高为xcm;
锻压前的体积为π×(10÷2)2×36;锻压后的体积为π×(20÷2)2×x;
∴列出方程为π×(10÷2)2×36=π×(20÷2)2×x,
解得x=9,
答:高变成了9厘米.
故
全部回答
- 1楼网友:千夜
- 2021-12-31 19:24
和我的回答一样,看来我也对了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯