定义[ a,b,c]为函数y=ax2+bx+c 的特征数, 下面给出特征数为 [2m,1 – m , –1– m] 的函数
答案:3 悬赏:0 手机版
解决时间 2021-02-02 11:26
- 提问者网友:最爱你的唇
- 2021-02-02 02:07
定义[ a,b,c]为函数y=ax2+bx+c 的特征数, 下面给出特征数为 [2m,1 – m , –1– m] 的函数
最佳答案
- 五星知识达人网友:轻雾山林
- 2021-02-02 02:38
选B
y = ax²+bx+c 特征数:[2m, 1-m, -1-m]
①当m = -3时,y = -6x²+4x+2 = -6(x-1/3)²+8/3,
顶点坐标是(1/3, 8/3)
----------------------------------------------正确
②当m > 0时,令y=0,有2mx²+(1-m)x+(-1-m)=0,
解得:x=±[(3m+1)/(4m)]-[(1-m)/(4m)]
|x2-x1|=(3m+1)/(2m)=3/2+1/(2m)>3/2
----------------------------------------------题目未写全,暂时不能判断
③当m < 0时,y = 2mx²+(1-m)x+(-1-m) 是一个开口向下的抛物线,
其对称轴是:x=(m-1)/(4m),在对称轴的右边y随x的增大而减小(单调递减)。
因为当m < 0时,(m-1)/(4m)=1/4 - 1/(4m) > 1/4,即对称轴在x=1/4右边,
因此函数在x=1/4右边先单调递增到对称轴位置,再单调递减。
----------------------------------------------错误
④当x=1时,y = 2mx²+(1-m)x+(-1-m)=2m+(1-m)+(-1-m)=0
即对任意m∈R,函数图像都经过点(1, 0)
那么同样的:当m ≠ 0时,函数图象都经过同一个点(1, 0)
----------------------------------------------正确
根据上面的分析,①④都是正确的,③是错误的。题中的答案只有B符合。
②中未写全的应该是3/2,即:
“当m > 0时,函数图象截x轴所得的线段长度大于3/2”
y = ax²+bx+c 特征数:[2m, 1-m, -1-m]
①当m = -3时,y = -6x²+4x+2 = -6(x-1/3)²+8/3,
顶点坐标是(1/3, 8/3)
----------------------------------------------正确
②当m > 0时,令y=0,有2mx²+(1-m)x+(-1-m)=0,
解得:x=±[(3m+1)/(4m)]-[(1-m)/(4m)]
|x2-x1|=(3m+1)/(2m)=3/2+1/(2m)>3/2
----------------------------------------------题目未写全,暂时不能判断
③当m < 0时,y = 2mx²+(1-m)x+(-1-m) 是一个开口向下的抛物线,
其对称轴是:x=(m-1)/(4m),在对称轴的右边y随x的增大而减小(单调递减)。
因为当m < 0时,(m-1)/(4m)=1/4 - 1/(4m) > 1/4,即对称轴在x=1/4右边,
因此函数在x=1/4右边先单调递增到对称轴位置,再单调递减。
----------------------------------------------错误
④当x=1时,y = 2mx²+(1-m)x+(-1-m)=2m+(1-m)+(-1-m)=0
即对任意m∈R,函数图像都经过点(1, 0)
那么同样的:当m ≠ 0时,函数图象都经过同一个点(1, 0)
----------------------------------------------正确
根据上面的分析,①④都是正确的,③是错误的。题中的答案只有B符合。
②中未写全的应该是3/2,即:
“当m > 0时,函数图象截x轴所得的线段长度大于3/2”
全部回答
- 1楼网友:西风乍起
- 2021-02-02 03:58
B
- 2楼网友:玩世
- 2021-02-02 02:45
因为函数y=ax2+bx+c的特征数为[2m,1-m,-1-m];
①当m=-3时,y=-6x2+4x+2=-6(x-13)2+83,顶点坐标是(13,83);此结论正确;
②当m>0时,令y=0,有2mx2+(1-m)x+(-1-m)=0,解得x=(m-1)±(3m+1)4m,x1=1,x2=-12-12m,
|x2-x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;
③当m<0时,y=2mx2+(1-m)x+(-1-m) 是一个开口向下的抛物线,其对称轴是:m-14m,在对称轴的右边y随x的增大而减小.因为当m<0时,m-14m=14-14m>14,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;
④当x=1时,y=2mx2+(1-m)x+(-1-m)=2m+(1-m)+(-1-m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.
根据上面的分析,①②④都是正确的,③是错误的.
故答案为:①②④.
①当m=-3时,y=-6x2+4x+2=-6(x-13)2+83,顶点坐标是(13,83);此结论正确;
②当m>0时,令y=0,有2mx2+(1-m)x+(-1-m)=0,解得x=(m-1)±(3m+1)4m,x1=1,x2=-12-12m,
|x2-x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;
③当m<0时,y=2mx2+(1-m)x+(-1-m) 是一个开口向下的抛物线,其对称轴是:m-14m,在对称轴的右边y随x的增大而减小.因为当m<0时,m-14m=14-14m>14,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;
④当x=1时,y=2mx2+(1-m)x+(-1-m)=2m+(1-m)+(-1-m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.
根据上面的分析,①②④都是正确的,③是错误的.
故答案为:①②④.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯