已知关于x的一元二次方程x2+2(2-m)x+3-6m=0
(1)求证:无论m取什么实数,方程总有实数根;
(2)请任选一个m的值,使方程的根为有理数,并求出此时方程的根.
已知关于x的一元二次方程x2+2(2-m)x+3-6m=0(1)求证:无论m取什么实数,方程总有实数根;(2)请任选一个m的值,使方程的根为有理数,并求出此时方程的根
答案:2 悬赏:30 手机版
解决时间 2021-02-01 22:05
- 提问者网友:玫瑰园
- 2021-01-31 23:46
最佳答案
- 五星知识达人网友:西岸风
- 2019-08-26 04:27
解:(1)△=(4-2m)2-4×(3-6m)=4(m+1)2≥0,所以方程总有实数根;
(2)当m=0时,原方程化为:x2+4x+3=0,
(x+3)(x+1)=0,
解得x=-3或-1.解析分析:(1)只要看根的判别式△=b2-4ac的值的符号就可以了;
(2)m可取比较简单的数,如0或1等,并通过解方程判断方程的根是否是有理数.点评:要证明方程总有实数根,应证明△恒为非负数.
(2)当m=0时,原方程化为:x2+4x+3=0,
(x+3)(x+1)=0,
解得x=-3或-1.解析分析:(1)只要看根的判别式△=b2-4ac的值的符号就可以了;
(2)m可取比较简单的数,如0或1等,并通过解方程判断方程的根是否是有理数.点评:要证明方程总有实数根,应证明△恒为非负数.
全部回答
- 1楼网友:你可爱的野爹
- 2019-04-06 11:39
正好我需要
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯