如图,已知AD是△ABC的角平分线,DE∥AB交AC于点E.那么△ADE是等腰三角形吗?请说明理由.
答案:2 悬赏:40 手机版
解决时间 2021-12-28 01:58
- 提问者网友:喧嚣尘世
- 2021-12-27 17:15
如图,已知AD是△ABC的角平分线,DE∥AB交AC于点E.那么△ADE是等腰三角形吗?请说明理由.
最佳答案
- 五星知识达人网友:佘樂
- 2021-12-27 18:42
答:△ADE是等腰三角形,
理由如下:
∵AD是△ABC的角平分线,
∴∠1=∠2,
∵DE∥AB,
∴∠1=∠3,
∴∠2=∠3,
∴AE=DE,
∴△ADE是等腰三角形.解析分析:△ADE是等腰三角形,根据角平分线的性质和平行线的性质证明:∠2=∠3即可.点评:本题考查了等腰三角形的判定及性质和平行线的性质;进行角的等量代换是正确解答本题的关键.
理由如下:
∵AD是△ABC的角平分线,
∴∠1=∠2,
∵DE∥AB,
∴∠1=∠3,
∴∠2=∠3,
∴AE=DE,
∴△ADE是等腰三角形.解析分析:△ADE是等腰三角形,根据角平分线的性质和平行线的性质证明:∠2=∠3即可.点评:本题考查了等腰三角形的判定及性质和平行线的性质;进行角的等量代换是正确解答本题的关键.
全部回答
- 1楼网友:平生事
- 2021-12-27 19:50
谢谢解答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯