n趋向于无穷(1/1*3+1/3*5+…+1/(2n-1)(2n+1)
答案:1 悬赏:70 手机版
解决时间 2021-01-04 10:22
- 提问者网友:捧腹剧
- 2021-01-03 15:04
n趋向于无穷(1/1*3+1/3*5+…+1/(2n-1)(2n+1)
最佳答案
- 五星知识达人网友:荒野風
- 2021-01-10 05:51
an = 1/[(2n-1)(2n+1)]
= (1/2) [ 1/(2n-1) - 1/(2n+1) ]
Sn = a1+a2+...+an
=(1/2)[ 1- 1/(2n+1) ]
lim(n->∞)[1/(1*3)+1/(3*5)+…+1/[(2n-1)(2n+1)]
=lim(n->∞) Sn
=lim(n->∞)(1/2)[ 1- 1/(2n+1) ]
=1/2
= (1/2) [ 1/(2n-1) - 1/(2n+1) ]
Sn = a1+a2+...+an
=(1/2)[ 1- 1/(2n+1) ]
lim(n->∞)[1/(1*3)+1/(3*5)+…+1/[(2n-1)(2n+1)]
=lim(n->∞) Sn
=lim(n->∞)(1/2)[ 1- 1/(2n+1) ]
=1/2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯