已知函数f(x)=ax^2-|x|+2a-1(a为实常数) 怎么做啊
答案:2 悬赏:20 手机版
解决时间 2021-03-28 12:38
- 提问者网友:欺烟
- 2021-03-28 00:03
已知函数f(x)=ax^2-|x|+2a-1(a为实常数) 怎么做啊
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-03-28 00:40
1,当a=0,f(x)=-|x|-1在[1,2]上最小值为-3
当a不等于0,只需讨论x>0的情况。
因为x属于【1.2】,所以可以去绝对值,然后配方得:
f(x)=ax^2-x+2a-1=a(x-1/2a)^2+2a-1/4a-1
(i)当1/2a>2,g(a)=f(2)=6a-3
(ii)当1/2a<1,g(a)=f(1)=3a-2
(iii)当1<=1/2a<=2,g(a)=f(1/2a)=2a-1/4a-1
2,分母上是增函数,当a=0,不满足题意。
当a>0,对称轴1/2a<=1,a>=1/2
当a<0,对称轴1/2a>=2,不满足题意。综上a>=1/2
我自己毛算算的,要讨论的情况实在是太多,挺麻烦的,楼主还是要自己算一下。
做错了也不能怪我啊- -
当a不等于0,只需讨论x>0的情况。
因为x属于【1.2】,所以可以去绝对值,然后配方得:
f(x)=ax^2-x+2a-1=a(x-1/2a)^2+2a-1/4a-1
(i)当1/2a>2,g(a)=f(2)=6a-3
(ii)当1/2a<1,g(a)=f(1)=3a-2
(iii)当1<=1/2a<=2,g(a)=f(1/2a)=2a-1/4a-1
2,分母上是增函数,当a=0,不满足题意。
当a>0,对称轴1/2a<=1,a>=1/2
当a<0,对称轴1/2a>=2,不满足题意。综上a>=1/2
我自己毛算算的,要讨论的情况实在是太多,挺麻烦的,楼主还是要自己算一下。
做错了也不能怪我啊- -
全部回答
- 1楼网友:北城痞子
- 2021-03-28 01:52
:(1)a=1,f(x)=x2-|x|+1= x2-x+1,x≥0 x2+x+1,x<0 = (x-1 2 )2+3 4 ,x≥0 (x+1 2 )2+3 4 ,x<0 (2分)
∴f(x)的单调增区间为(1 2 ,+∞),(-1 2 ,0);f(x)的单调减区间为(-∞,-1 2 ),(0,1 2 )(4分)
(2)由于a>0,当x∈[1,2]时,f(x)=ax2-x+2a-1=a(x-1 2a )2+2a-1 4a -1
100<1 2a <1,即a>1 2 f(x)在[1,2]为增函数g(a)=f(1)=3a-2
201≤1 2a ≤2,即1 4 ≤a≤1 2 时,g(a)=f(1 2a )=2a-1 4a -1
301 2a >2,即0<a<1 4 时f(x)在[1,2]上是减函数:g(a)=f(2)=6a-3
综上可得g(a)= 6a-3 0<a<1 4 2a-1 4a -1 1 4 ≤a≤1 2 3a-2 a>1 2 (10分)
(3)h(x)=ax+2a-1 x -1在区间[1,2]上任取x1、x2,
则h(x1)-h(x2)=(ax2+2a-1 x2 -1)-(ax1+2a-1 x1 -1)
=(x2-x1)(a-2a-1 x1x2 )=x2-x1 x1x2 [ax1x2-(2a-1)](*)(12分)
∵h(x)在[1,2]上是增函数
∴h(x2)-h(x1)>0
∴(*)可转化为ax1x2-(2a-1)>0对任意x1、x2∈[1,2]
且x1<x2都成立,即ax1x2>2a-1
10当a=0时,上式显然成立
20a>0x1x2>2a-1 a ,由1<x1x2<4得2a-1 a ≤1,解得0<a≤1
30a<0x1x2<2a-1 a 2a-1 a ≥4,得-1 2 ≤a<0
所以实数a的取值范围是[-1 2 ,1](16分)
∴f(x)的单调增区间为(1 2 ,+∞),(-1 2 ,0);f(x)的单调减区间为(-∞,-1 2 ),(0,1 2 )(4分)
(2)由于a>0,当x∈[1,2]时,f(x)=ax2-x+2a-1=a(x-1 2a )2+2a-1 4a -1
100<1 2a <1,即a>1 2 f(x)在[1,2]为增函数g(a)=f(1)=3a-2
201≤1 2a ≤2,即1 4 ≤a≤1 2 时,g(a)=f(1 2a )=2a-1 4a -1
301 2a >2,即0<a<1 4 时f(x)在[1,2]上是减函数:g(a)=f(2)=6a-3
综上可得g(a)= 6a-3 0<a<1 4 2a-1 4a -1 1 4 ≤a≤1 2 3a-2 a>1 2 (10分)
(3)h(x)=ax+2a-1 x -1在区间[1,2]上任取x1、x2,
则h(x1)-h(x2)=(ax2+2a-1 x2 -1)-(ax1+2a-1 x1 -1)
=(x2-x1)(a-2a-1 x1x2 )=x2-x1 x1x2 [ax1x2-(2a-1)](*)(12分)
∵h(x)在[1,2]上是增函数
∴h(x2)-h(x1)>0
∴(*)可转化为ax1x2-(2a-1)>0对任意x1、x2∈[1,2]
且x1<x2都成立,即ax1x2>2a-1
10当a=0时,上式显然成立
20a>0x1x2>2a-1 a ,由1<x1x2<4得2a-1 a ≤1,解得0<a≤1
30a<0x1x2<2a-1 a 2a-1 a ≥4,得-1 2 ≤a<0
所以实数a的取值范围是[-1 2 ,1](16分)
参考资料:jyeoo网
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯