四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置
答案:2 悬赏:50 手机版
解决时间 2021-01-03 07:21
- 提问者网友:我一贱你就笑
- 2021-01-03 00:19
最佳答案
- 五星知识达人网友:山有枢
- 2021-01-03 01:27
解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;
可得旋转中心为点A;旋转角度为90°或270°;
(2)DE=AD-AE=7-4=3;
(3)∵∠EAF=90°,∠EBA=∠FDA,
∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,
∴BE⊥DF,
即BE与DF是垂直关系.解析分析:先根据正方形的性质得到:△AFD≌△AEB,从而得出等量关系AE=AF=4,∠EAF=90°,∠EBA=∠FDA,找到旋转中心和旋转角度.这些等量关系即可求出DE=AD-AE=7-4=3;BE⊥DF.点评:本题考查旋转的性质和正方形的性质,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
可得旋转中心为点A;旋转角度为90°或270°;
(2)DE=AD-AE=7-4=3;
(3)∵∠EAF=90°,∠EBA=∠FDA,
∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,
∴BE⊥DF,
即BE与DF是垂直关系.解析分析:先根据正方形的性质得到:△AFD≌△AEB,从而得出等量关系AE=AF=4,∠EAF=90°,∠EBA=∠FDA,找到旋转中心和旋转角度.这些等量关系即可求出DE=AD-AE=7-4=3;BE⊥DF.点评:本题考查旋转的性质和正方形的性质,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
全部回答
- 1楼网友:雪起风沙痕
- 2021-01-03 02:41
我学会了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯