高二数学,圆锥曲线题目解答
解决时间 2021-08-18 12:27
- 提问者网友:無理詩人
- 2021-08-18 06:01
过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为 (根号2)/2 的椭圆C相交于A,B 两点,直线 y=(1/2)x 过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l 对称,求直线l 与椭圆的方程。
注明过程,谢谢。
最佳答案
- 五星知识达人网友:底特律间谍
- 2021-08-18 07:20
设过Q(1,0)的直线L为:y=k(x-1)=kx-k
∵椭圆C的焦点在x轴上,∴可设其标准方程为:x^/a^ + y^/b^=1
另外,设其右焦点为(c,0),且a>b>0,c>0,根据椭圆性质有:
a^-c^=b^ ①
又由于椭圆离心率为e=√2/2
∴c/a=√2/2 ②
由①,②可得到:
b=c,a=√2c
∴椭圆方程可化为:x^/2c^ + y^/c^=1
设椭圆C与直线L的两个交点为A(x1,y1),B(x2,y2),根据中点坐标公式,可得AB中点M的坐标为((x1+x2)/2,(y2+y2)/2)
联立椭圆C与直线L的方程,消去y,可得到关于x的一元二次方程:
(2k^+1)x^-4k^x+(2k^-2c^)=0
由此可得:
x1+x2=4k^/(2k^+1) ③
将P(x1,y1),Q(x2,y2)代入直线L的方程可得:
y1=kx1-k
y2=kx2-k
<=>y1+y2=k(x1+x2)-2k
将③代入,得:
y1+y2=-2k/(2k^+1) ④
分别将③,④代入已设的PQ中点M的坐标,可得到:
M(2k^/(2k^+1),-k/(2k^+1))
∵M在直线y=x/2上
∴ k/(2k^+1)=(1/2)*(2k^)/(2k^+1)
<=>k=0或k=-1
若k=0,则直线L的方程为y=0,即x轴,必过与椭圆C的右焦点F(c,0),不符合题目中“椭圆C上存在与F关于L对称的点”的条件,故k=0舍去;
由此可得到k=-1
于是,直线L的方程就为:y=-x+1
设椭圆C上关于L与F点对称的点为D(x3,y3)
根据对称的定义可知:线段DF被直线L垂直平分,则有:
DF⊥L
<=>kDF=-1/kL=-1/(-1)=1
结合F(c,0),可得到直线DF的方程为:
y=x-c
联立DF与L的方程y=-x+1,可得出其交点的坐标N为:
N((c+1)/2 , (1-c)/2)
由刚才的结论:DF被L垂直平分,可知N为DF的中点,于是,联合N,F的坐标,根据中点坐标公式,可以得出D点坐标为:
D(2*(c+1)/2 - c , 2*(1-c)/2 - 0)
即D(1 , 1-c)
而D为椭圆C上的点,故将其代入椭圆C所设的标准方程:x^/2c^ + y^/c^=1:
1 / 2c^ + (1-c)^/c^ =1
<=>c=3/4
带回到原所设方程,可得到C的方程为:
x^/(9/8) + y^/(9/16)=1
我要举报
大家都在看
推荐资讯