填空题已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此
答案:2 悬赏:70 手机版
解决时间 2021-04-11 15:26
- 提问者网友:轻浮
- 2021-04-11 02:20
填空题
已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.
最佳答案
- 五星知识达人网友:行雁书
- 2021-04-11 03:28
-37解析分析:本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常熟m的值,即可求出函数的最小值.解答:由已知,f′(x)=6x2-12x,有6x2-12x≥0得x≥2或x≤0,因此当x∈[2,+∞),(-∞,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,又因为x∈[-2,2],所以得当x∈[-2,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,所以f(x)max=f(0)=m=3,故有f(x)=2x3-6x2+3所以f(-2)=-37,f(2)=-5因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37.
全部回答
- 1楼网友:几近狂妄
- 2021-04-11 03:48
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯