1除以(x乘根号1-x^2)的不定积分
答案:4 悬赏:70 手机版
解决时间 2021-03-21 11:59
- 提问者网友:凉末
- 2021-03-20 17:01
1除以(x乘根号1-x^2)的不定积分
最佳答案
- 五星知识达人网友:老鼠爱大米
- 2021-03-20 18:06
这样的题一般用三角代换。令x=sint,dx=costdt
∫dx/[x√(1-x^2)]=∫costdt/[sintcost]=∫1/sint*dt=∫sint/(sint)^2*dt=∫sint/[1-(cost)^2]*dt
=-∫d(cost)/[1-(cost)^2]=-1/2*∫[1/(cost+1)-1/(cost-1)]d(cost)
=-1/2*(ln|cost+1|-ln|cost-1)+C
=-1/2*ln|(cost+1)/(cost-1)|+C
=-ln|(sint/(cost-1)|+C
=-ln|x/[√(1-x^2)-1]|+C
=ln|[√(1-x^2)-1]/x|+C
∫dx/[x√(1-x^2)]=∫costdt/[sintcost]=∫1/sint*dt=∫sint/(sint)^2*dt=∫sint/[1-(cost)^2]*dt
=-∫d(cost)/[1-(cost)^2]=-1/2*∫[1/(cost+1)-1/(cost-1)]d(cost)
=-1/2*(ln|cost+1|-ln|cost-1)+C
=-1/2*ln|(cost+1)/(cost-1)|+C
=-ln|(sint/(cost-1)|+C
=-ln|x/[√(1-x^2)-1]|+C
=ln|[√(1-x^2)-1]/x|+C
全部回答
- 1楼网友:逐風
- 2021-03-20 22:18
不知道
- 2楼网友:你哪知我潦倒为你
- 2021-03-20 20:58
表达式不够明确,可能被理解为两种情形:x^2(√x)/(1-x) 或 (x^2)*√[x/(1-x)];
如是第一种情形积分:设t=√x,则dx=2tdt;
∫[x^2(√x)/(1-x)]dx=∫[2t^6/(1-t^2]dt=-2∫t^4dt-2∫t^2dt-2∫dt+2∫[dt/(1-t^2)
=-(2/5)t^5-(2/3)t^3-2t+(1/2)ln[(1+t)/(1-t)]+c
=-(2/5)x^2√x-(2/3)x√x-2√x+(1/2)ln|(1+√x)/(1-√x)|+c;
如是第二种情形积分,有些麻烦:设t=√[x/(1-x)],x=t^2/(1+t^2),dx=2tdt/(1+t^2)^2;
∫x^2*√[x/(1-x)]dx=∫[t^2/(1+t^2)]^2*t*2tdt/(1+t^2)^2=∫[2t^6/(1+t^2)^4]dt;
再设tan u=t,则dt=du/(cosu)^2;
原积分=∫[2(tanu)^6/(1+(tanu)^2)^4] du/(cosu)^2=∫2(sinu)^6du=(1/4)∫(1-cos2u)^3 du
=(1/4)∫[1-3cos2u+3(cos2u)^2-(cos2u)^3]du=u/4-(3/8)sin(2u)+[3u/2+(3/8)sin(4u)]-[(sin2u)/2-(sin2u)^3/6]
=7u/4-(7/8)sin2u+(3/8)sin(4u)+(sin2u)^3/6+c
将u=arctan√[x/(1-x)]代入上式即得最后结果;
- 3楼网友:慢性怪人
- 2021-03-20 19:35
∫dx/[x√(1-x^2)]
= ∫dx/[x^2 *√(1-1/x^2)]
=-∫d(1/x)/√[1-(1/x)^2]
=arccos(1/x)+C
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯