通项为n/(n+1)(n+2)(n+3),求前n项和
- 提问者网友:难遇难求
- 2021-05-01 08:21
- 五星知识达人网友:十鸦
- 2021-05-01 09:27
sn=1/2*3*4+2/3*4*5+3/4*5*6+4/5*6*7+...+n/(n+1)(n+2)(n+3)
=1/2*(1/2*3-1/3*4)+2/2*(1/3*4-1/4*5)+3/2*(1/4*5-1/5*6)+...+n/2[1/(n+1)(n+2)-1/(n+2)(n+3)]
=1/2*1/2*3-1/2*1/3*4+2/2*1/3*4-2/2*1/4*5+3/2*1/4*5+3/2*1/5*6+...+n/2*1/(n+1)(n+2)-n/2*1/(n+2)(n+3)
=1/2*1/2*3+1/2*1/3*4+1/2*1/4*5+...+1/2*1/(n+1)(n+2)-n/2*1/(n+2)(n+3)
=1/2[1/2*3+1/3*4+1/4*5+...+1/(n+1)(n+2)]-n/2*1/(n+2)(n+3)
=n(n+1)/4(n+2)(n+3)
- 1楼网友:往事埋风中
- 2021-05-01 10:32
an=n/[(n+1)(n+2)(n+3)]
=[(n+1)-1]/[(n+1)(n+2)(n+3)]
=1/[(n+2)(n+3)]-1/[(n+1)(n+2)(n+3)]
=1/(n+2)-1/(n+3)+[(n+1)(n+3)-(n+2)^2]/[(n+1)(n+2)(n+3)]
=1/(n+2)-1/(n+3)+1/(n+2)-(n+2)/[(n+1)(n+3)]
=2/(n+2)-1/(n+3)-[(n+1)+1]/[(n+1)(n+3)]
=2/(n+2)-1/(n+3)-1/(n+3)-1/[(n+1)(n+3)]
=2/(n+2)-2/(n+3)-1/2[1/(n+1)-1/(n+3)]
=2/(n+2)-5/[2(n+3)]-1/[2(n+1)]
=4/[2(n+2)]-5/[2(n+3)]-1/[2(n+1)]
故各项为
a1=4/(2*3)-5/(2*4)-1/(2*2)
a2=4/(2*4)-5/(2*5)-1/(2*3)
a3=4/(2*5)-5/(2*6)-1/(2*4)
....
an=4/[2(n+2)]-5/[2(n+3)]-1/[2(n+1)]
前n项和=
- 2楼网友:行路难
- 2021-05-01 10:00