正交矩阵的相似
若两个n阶正交阵相似,证明它们正交相似.
即对正交阵A,B,存在n阶方阵T,使
(T逆)AT = B
则存在
n阶正交方阵D,使
(D逆)AD = B.
好像是用相似关系的等价类来说明.我矩阵学得太烂,谁给说一下思路?
有没有人看啊?
正交矩阵的相似若两个n阶正交阵相似,证明它们正交相似.即对正交阵A,B,存在n阶方阵T,使 (T逆)AT = B 则存在
答案:1 悬赏:0 手机版
解决时间 2021-06-08 22:44
- 提问者网友:喧嚣尘世
- 2021-06-08 19:57
最佳答案
- 五星知识达人网友:掌灯师
- 2021-06-08 21:36
恩,我在看,我觉得是这样的:)
正交矩阵因为A逆=A' (转置或转置共扼),所以A'A=AA'(=I),A是正规矩阵,它具有n个正交的特征向量.(完整的证明可以在一般的线性代数书里或所有的高等代数书里找到).把这些向量排列成一个矩阵(也是正交矩阵)P,可以使得A正交相似变换一个对角矩阵R,对角的元素都是A的特征值.(P逆 AP=R)
相似变换不改变A的特征值,则如果A和B相似,B也可以找到一个正交矩阵Q,使得Q逆BQ=R.(特征值是正交矩阵的全系不变量,由一组特征值或者说R可以确定一族正交矩阵的等价关系,这族矩阵的等价关系就是,相似关系,即(T逆)AT = B,T可以不是正交矩阵)
那么,从Q逆AQ=P逆BP=R可以得到
PQ逆AQP逆=B
而两个正交矩阵乘积也是正交矩阵,
所以A和B之间可以通过正交相似变换达到.(QP逆)存在的正交相似变换D
哦 milksea兄,原来是你呵呵,说了很多废话,别骂俺
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯