在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.
(1)如图1,当点P与点O重合时,OE与OF的数量关系为________;
(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;
(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为________;位置关系为________.
在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在
答案:2 悬赏:80 手机版
解决时间 2021-04-15 02:54
- 提问者网友:原来太熟悉了会陌生
- 2021-04-14 12:16
最佳答案
- 五星知识达人网友:神的生死簿
- 2021-04-14 13:00
(1)解:OE=OF(相等);(1分)
(2)解:OE=OF,OE⊥OF;(3分)
证明:连接BO,
∵在正方形ABCD中,O为AC中点,
∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)
∵PF⊥BC,∠BCO=45°,
∴∠FPC=45°,PF=FC.
∵正方形ABCD,∠ABC=90°,
∵PF⊥BC,PE⊥AB,
∴∠PEB=∠PFB=90°.
∴四边形PEBF是矩形,
∴BE=PF.(5分)
∴BE=FC.
∴△OBE≌△OCF,
∴OE=OF,∠BOE=∠COF,(7分)
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°,
∴∠EOF=90°,
∴OE⊥OF.(8分)
(3)OE=OF(相等),OE⊥OF(垂直).(10分)解析分析:(1)根据利用正方形的性质和直角三角形的性质即可判定四边形BEOF为正方形,从而得到结论;(2)当移动到点P的位置时,可以通过证明四边形BEPF为矩形来得到两条线段的数量关系;(3)继续变化,有相同的关系,其证明方法也类似.点评:本题考查了正方形的性质,解题的关键是抓住动点问题,化动为静,还要大胆的猜想.
(2)解:OE=OF,OE⊥OF;(3分)
证明:连接BO,
∵在正方形ABCD中,O为AC中点,
∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)
∵PF⊥BC,∠BCO=45°,
∴∠FPC=45°,PF=FC.
∵正方形ABCD,∠ABC=90°,
∵PF⊥BC,PE⊥AB,
∴∠PEB=∠PFB=90°.
∴四边形PEBF是矩形,
∴BE=PF.(5分)
∴BE=FC.
∴△OBE≌△OCF,
∴OE=OF,∠BOE=∠COF,(7分)
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°,
∴∠EOF=90°,
∴OE⊥OF.(8分)
(3)OE=OF(相等),OE⊥OF(垂直).(10分)解析分析:(1)根据利用正方形的性质和直角三角形的性质即可判定四边形BEOF为正方形,从而得到结论;(2)当移动到点P的位置时,可以通过证明四边形BEPF为矩形来得到两条线段的数量关系;(3)继续变化,有相同的关系,其证明方法也类似.点评:本题考查了正方形的性质,解题的关键是抓住动点问题,化动为静,还要大胆的猜想.
全部回答
- 1楼网友:平生事
- 2021-04-14 13:46
我学会了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯