等差数列{a n } 的前n项的和为S n ,且S 5 =45,S 6 =60.(1)求{a n } 的通项公式;(2)若数列{b n }
答案:2 悬赏:0 手机版
解决时间 2021-01-04 01:49
- 提问者网友:沦陷
- 2021-01-03 14:13
等差数列{a n } 的前n项的和为S n ,且S 5 =45,S 6 =60.(1)求{a n } 的通项公式;(2)若数列{b n } 满足b n -b n =a n-1 (n?N * ),且b 1 =3,设数列 { 1 b n } 的前n项和为T n .求证:T n < 3 4 .
最佳答案
- 五星知识达人网友:上分大魔王
- 2021-01-22 06:11
(1)a 6 =S 6 -S 5 =15,由 S 6 =
( a 1 + a 6 )×6
2 =60,
解得a 1 =5,又∵d=
a 6 - a 1
6-1 =2,
所以a n =2n+3.…4
(2)证明:∵b 2 -b 1 =a 1 ,
b 3 -b 2 =a 2 ,
b 4 -b 3 =a 3 ,
…
b n -b n-1 =a n-1 ,
叠加得 b n - b 1 =
( a 1 + a n-1 )(n-1)
2 =
(5+2n+1)(n-1)
2 ,
所以 b n = n 2 +2n .…(9分)
∴
1
b n =
1
n 2 +2n =
1
2 [
1
n -
1
n+2 ] ,
∴ T n =
1
2 (1-
1
3 +
1
2 -
1
4 +
1
3 -
1
5 +…+
1
n -
1
n+2 )
=
1
2 (
3
2 -
1
n+1 -
1
n+2 )
=
3
4 -
1
2 (
1
n+1 +
1
n+2 )<
3
4 .…(12分)
( a 1 + a 6 )×6
2 =60,
解得a 1 =5,又∵d=
a 6 - a 1
6-1 =2,
所以a n =2n+3.…4
(2)证明:∵b 2 -b 1 =a 1 ,
b 3 -b 2 =a 2 ,
b 4 -b 3 =a 3 ,
…
b n -b n-1 =a n-1 ,
叠加得 b n - b 1 =
( a 1 + a n-1 )(n-1)
2 =
(5+2n+1)(n-1)
2 ,
所以 b n = n 2 +2n .…(9分)
∴
1
b n =
1
n 2 +2n =
1
2 [
1
n -
1
n+2 ] ,
∴ T n =
1
2 (1-
1
3 +
1
2 -
1
4 +
1
3 -
1
5 +…+
1
n -
1
n+2 )
=
1
2 (
3
2 -
1
n+1 -
1
n+2 )
=
3
4 -
1
2 (
1
n+1 +
1
n+2 )<
3
4 .…(12分)
全部回答
- 1楼网友:七十二街
- 2021-01-22 07:51
(1)由题意得
因为{a n }是等差数列
所以当n+m=k+l时则a n +a m =a k +a l
所以s 4 =a 1 +a 2 +a 3 +a 4
=2(a 1 +a 4 )=16
由∵a 4 =7
∴a 1 =1
∴d=2
所以数列{a n }的通项公式是a n =2n-1.
(2)由(1)得a n =2n-1
∴
1
a n a n+1 =
1
(2n-1)(2n+1) =
1
2 (
1
2n-1 -
1
2n+1 )
所以
1
a 1 a 2 +
1
a 2 a 3 +…+
1
a 2007 a 2008
=
1
2 (1-
1
3 +
1
3 -
1
5 +…+
1
4011 -
1
4013 +
1
4013 -
1
4015 )
=
1
2 (1-
1
4015 )
=
2007
4015
∴
1
a 1 a 2 +
1
a 2 a 3 +…+
1
a 2007 a 2008 的值是
2007
4015 .
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯