(1)当n=1时,左边=1-1=0,右边=1x0x2/4=0所以左边=右边所以当n=1时,结论成立(2)假设当n=k(k为正整数)时结论成立所以(k^2-1)+2(k^2-2^2)+...+k(k^2-k^2)=k^2(k-1)(k+1)/4当n=k+1时[(k+1)^2-1]+2[(k+1)^2-2]+...+(k+1)[(k+1)^2-(k+1)^2]=(k^2-1)+2(k^2-2^2)+...+k(k^2-K^2)+(2k+1)+2(2k+1)+...+k(2k+1)=k^2(k-1)(k+1)/4+(k+2)((k+1)(2k+1)/2=(k+1)^2[(k+1)^2-1][(k+1)^2+1]所以当n=k+1(k+1为正整数)时结论成立综上得结论成立!