点到直线的距离
- 提问者网友:浮克旳回音
- 2021-04-15 12:22
- 五星知识达人网友:空山清雨
- 2021-04-15 12:44
某电信局计划年底解决本地区最后一个小区P的电话通信问题.离它最近的只有一条线路通过,要完成这项任务,至少需要多长的电缆?
经过测量,若按照部门内部设计好的坐标图(即以电信局为原点),得知这个小区的坐标为P(-1,5),离它最近线路其方程为2x+y+10=0.
这个实际问题要解决,要转化成什么样的数学问题?学生得出就是求点到直线的距离.教师提出这堂课我们就来学习点到直线的距离,并板书写课题:点到直线的距离.
二、自主探索推导公式
多媒体显示:已知点P(x0,y0),直线:Ax+By+C=0,求点P到直线的距离.怎样求点到直线距离呢?学生思考,做垂线找垂足Q,求线段PQ的长度.怎样用点的坐标和直线方程求和表示点到直线距离呢?
教师提示在解决问题时先可以考虑特殊情况,再考虑一般情况.学生提出平行于x轴和y轴的特殊情况.学生解决.
板书:
如何求?
学生思考回答下列想法:
思路一:过作于点,根据点斜式写出直线方程,由与联立方程组解得点坐标,然后利用两点距离公式求得.
教师评价:此方法思路自然.
教师继续提出问题:
(1)求线段长度可以构造图形吗? (2)什么图形?如何构造?
(3)第三个顶点在什么位置? (4)特殊情况与一般情况有联系吗?
学生探讨得到:构造三角形,把线段放在直角三角形中.第三个顶点在什么位置?可能在直线与x轴的交点M或与y轴交点N,或过P点做x,y轴的平行线与直线的交点R、S.
教师根据学生提出的方案,收集思路.
思路二:在直角△PQM,或直角△PQN中,求边长与角(角与直线到直线角有关),用余弦值.
思路三:在直角△PQR,或直角△PQS中,求边长与角(角与直线倾斜角有关,但分情况),用余弦值.
思路四:在直角△PRS中,求线段PR、PS、RS,利用等面积法(不涉及角和分情况),求得线段PQ长.
学生分组练习,教师巡视,根据学生情况演示探索过程.
(思路一)解:直线:,即
由,
(思路四)解:设,,,
,;,
由,
而
说明:如果学生没有想到思路二、三,教师提示做课后思考作业题目.
教师提问:①上式是由条件下得出,对成立吗?
②点P在直线上成立吗?
③公式结构特点是什么?用公式时直线方程是什么形式?
由此推导出点P(x0,y0)到直线:Ax+By+C=0距离公式:
适用于任意点、任意直线.
教师继续引导学生思考,不构造三角形可以求吗?(在前面学习的向量知识中,有向量的模.由于在证明两直线垂直时已经用到向量知识,且也提出过直线的法向量的概念.)能否用向量知识求解呢?
思路五:已知直线的法向量,则,,如何选取法向量?直线的方向向量,则法向量为,或,或其它.由师生一起分析得出取=.
教师板演:
,
,由于点Q在直线上,所以满足直线方程,解得
教师评析:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法.
三、变式训练学会应用
练习:
1.解决课堂提出的实际问题.(学生口答)
2.求点P0(-1,2)到下列直线的距离:
①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
练习选择:平行坐标轴的特殊直线,直线方程的非一般形式.
练习目的:熟悉公式结构,记忆并简单应用公式.
教师强调:直线方程的一般形式.
例题:
3.求平行线2x-7y+8=0和2x-7y-6=0的距离.
教师提问:如何求两平行线间的距离?距离如何转化?
学生回答:选其中一条直线上的点到另一条直线的距离.
师生共同分析:点所在直线的任意性、点的任意性.几何画板演示点和直线变化,选取点和直线.学生自己练习,教师巡视.教师提问几个学生回答自己选取的点和直线以及结果.然后选择一种取任意点的方法进行板书.
解:在直线2x-7y-6=0上任取点P(x0,y0),则2 x0-7 y0-6=0,点P(x0,y0)到直线2x-7y+8=0的距离是.
教师评述:本例题选取课本例题,但解法较多.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和.或者选取直线外的点P,求它到两条直线的距离,然后作差.
引申思考:与两平行线间距离公式.
- 1楼网友:几近狂妄
- 2021-04-15 15:10
- 2楼网友:白昼之月
- 2021-04-15 14:28
点(X,Y)到 直线Ax+By+C=0 的距离为
- 3楼网友:洒脱疯子
- 2021-04-15 13:14
(Ax+By+C)/√(A^2+B^2)