计算定积分∫(上限1下限-1) (2x^2+x^9*cosx)/(1+√(1-x^2))dx
计算定积分∫(上限1下限-1) (2x^2+x^9*cosx)/(1+√(1-x^2))dx
答案:1 悬赏:80 手机版
解决时间 2021-08-15 11:03
- 提问者网友:骑士
- 2021-08-15 00:09
最佳答案
- 五星知识达人网友:空山清雨
- 2021-08-15 00:22
因为这一项,x^9*cosx/(1+√(1-x^2)是个奇函数,所以在-1,1上的积分为0
所以元积分=4∫(0到1) x^2/(1+√(1-x^2))dx
令x=sint
元积分=4∫(0到π/2) (sint)^2 cost/(1+cost)dt
=4∫(0到π/2) [1-(cost)^2] cost/(1+cost)dt
=4∫(0到π/2) [1-(cost)] costdt
=4∫(0到π/2) [cost-(cost)^2] dt
=4sint|(0到π/2)-2∫(0到π/2) (cos2t+1) dt
=4-(sin2t+2t)|(0到π/2)
=4-π
再问: x^9*cosx/(1+??(1-x^2)????溯????f(x)??????-f(-x)???
再答: cosx???????? (1+??(1-x^2)????????? x&9????溯?? ?????
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯