永发信息网

给我提供一些高中数学定理公式详细的 谢谢了

答案:2  悬赏:70  手机版
解决时间 2021-04-26 20:07
给我提供一些高中数学定理公式详细的 谢谢了
最佳答案
http://ishare.iask.sina.com.cn/f/5405501.html
全部回答

高中数学公式大全

 

1. 元素与集合的关系

, .

2.德摩根公式

.

3.包含关系

4.容斥原理

.

    5.集合 的子集个数共有  个;真子集有 –1个;非空子集有  –1个;非空的真子集有 –2个.

6.二次函数的解析式的三种形式

(1)一般式 ;

(2)顶点式 ;

(3)零点式 .

7.解连不等式 常有以下转化形式

.

8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .

9.闭区间上的二次函数的最值

   二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:

(1)当a>0时,若 ,则 ;

, , .

(2)当a<0时,若 ,则 ,若 ,则 , .

10.一元二次方程的实根分布

依据:若 ,则方程 在区间 内至少有一个实根 .

  设 ,则

(1)方程 在区间 内有根的充要条件为 或 ;

(2)方程 在区间 内有根的充要条件为 或 或 或 ;

(3)方程 在区间 内有根的充要条件为 或  .

11.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .

(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .

(3) 恒成立的充要条件是 或 .

12.真值表

非p

p或q

p且q

   13.常见结论的否定形式

原结论

反设词

原结论

反设词

不是

至少有一个

一个也没有

都是

不都是

至多有一个

至少有两个

大于

不大于

至少有 个

至多有( )个

小于

不小于

至多有 个

至少有( )个

对所有 ,

成立

存在某 ,

不成立

对任何 ,

不成立

存在某 ,

成立

14.四种命题的相互关系


原命题       互逆       逆命题

若p则q               若q则p

       互       互

  互        为   为        互

  否                     否

           逆   逆           

         否      否

否命题               逆否命题   

若非p则非q    互逆      若非q则非p


15.充要条件

   (1)充分条件:若 ,则 是 充分条件.

(2)必要条件:若 ,则 是 必要条件.

(3)充要条件:若 ,且 ,则 是 充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

16.函数的单调性

(1)设 那么

上是增函数;

上是减函数.

(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.

17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

19.若函数 是偶函数,则 ;若函数 是偶函数,则 .

20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与  的图象关于直线 对称.

21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.

22.多项式函数 的奇偶性

多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.

多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.

23.函数 的图象的对称性

(1)函数 的图象关于直线 对称

.

(2)函数 的图象关于直线 对称

.

24.两个函数图象的对称性

(1)函数 与函数 的图象关于直线 (即 轴)对称.

(2)函数 与函数 的图象关于直线 对称.

(3)函数 和 的图象关于直线y=x对称.

25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.

26.互为反函数的两个函数的关系

.

27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.

28.几个常见的函数方程

    (1)正比例函数 , .

(2)指数函数 , .

(3)对数函数 , .

(4)幂函数 , .

(5)余弦函数 ,正弦函数 , ,

.

29.几个函数方程的周期(约定a>0)

(1) ,则 的周期T=a;

(2) ,

或 ,

或 ,

或 ,则 的周期T=2a;

(3) ,则 的周期T=3a;

(4) 且 ,则 的周期T=4a;

(5)

,则 的周期T=5a;

(6) ,则 的周期T=6a.

30.分数指数幂

(1) ( ,且 ).

(2) ( ,且 ).

31.根式的性质

(1) .

(2)当 为奇数时, ;

当 为偶数时, .

32.有理指数幂的运算性质

(1)  .

(2) .

(3) .

注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

  .

34.对数的换底公式

 ( ,且 , ,且 , ).

推论 ( ,且 , ,且 , , ).

35.对数的四则运算法则

若a>0,a≠1,M>0,N>0,则

(1) ;

(2) ;

(3) .

36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.

37. 对数换底不等式及其推广

    若 , , , ,则函数

    (1)当 时,在 上 为增函数.

   (2)当 时,在 上 为减函数.

推论:设 ,且 ,则

(1) .

(2) .

38. 平均增长率的问题

如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .

39.数列的同项公式与前n项的和的关系

( 数列 的前n项的和为 ).

40.等差数列的通项公式

其前n项和公式为

.

41.等比数列的通项公式

其前n项的和公式为

或 .

42.等比差数列 : 的通项公式为

其前n项和公式为

.

43.分期付款(按揭贷款)

每次还款 元(贷款 元, 次还清,每期利率为 ).

44.常见三角不等式

(1)若 ,则 .

(2) 若 ,则 .

(3) .

45.同角三角函数的基本关系式

, = , .

46.正弦、余弦的诱导公式

(n为偶数)

(n为奇数)

(n为偶数)

(n为奇数)

     

47.和角与差角公式

    ;

;

.

(平方正弦公式);

.

= (辅助角 所在象限由点 的象限决定,  ).

48.二倍角公式

.

.

.

49. 三倍角公式

.

. .

50.三角函数的周期公式

函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .

51.正弦定理

.

52.余弦定理

;

;

.

53.面积定理

(1) ( 分别表示a、b、c边上的高).

(2) .

(3) .

54.三角形内角和定理 

在△ABC中,有

.

55. 简单的三角方程的通解

    .

    .

.

特别地,有

.

    .

.

56.最简单的三角不等式及其解集

    .

.

    .

    .

    .

.

57.实数与向量的积的运算律

设λ、μ为实数,那么

(1) 结合律:λ(μa)=(λμ)a;

(2)第一分配律:(λ+μ)a=λa+μa;

(3)第二分配律:λ(a+b)=λa+λb.

58.向量的数量积的运算律:

(1) a·b= b·a (交换律);

(2)( a)·b= (a·b)= a·b= a·( b);

(3)(a+b)·c= a ·c +b·c.

59.平面向量基本定理 

如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e12e2

不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.

60.向量平行的坐标表示

    设a= ,b= ,且b 0,则a b(b 0) .

53. a与b的数量积(或内积)

a·b=|a||b|cosθ.

    61. a·b的几何意义

数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.

62.平面向量的坐标运算

(1)设a= ,b= ,则a+b= .

(2)设a= ,b= ,则a-b= . 

    (3)设A ,B ,则 .

(4)设a= ,则 a= .

(5)设a= ,b= ,则a·b= .

63.两向量的夹角公式

(a= ,b= ).

64.平面两点间的距离公式

  =

(A ,B ).

65.向量的平行与垂直

设a= ,b= ,且b 0,则

A||b b=λa .

a b(a 0) a·b=0 .

66.线段的定比分公式

设 , , 是线段 的分点, 是实数,且 ,则

( ).

67.三角形的重心坐标公式

△ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .

68.点的平移公式

 .

注:图形F上的任意一点P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 .

69.“按向量平移”的几个结论

(1)点 按向量a= 平移后得到点 .

(2) 函数 的图象 按向量a= 平移后得到图象 ,则 的函数解析式为 .

(3) 图象 按向量a= 平移后得到图象 ,若 的解析式 ,则 的函数解析式为 .

(4)曲线 : 按向量a= 平移后得到图象 ,则 的方程为 .

(5) 向量m= 按向量a= 平移后得到的向量仍然为m= .

70. 三角形五“心”向量形式的充要条件

设 为 所在平面上一点,角 所对边长分别为 ,则

(1) 为 的外心 .

(2) 为 的重心 .

(3) 为 的垂心 .

(4) 为 的内心 .

(5) 为 的 的旁心 .

71.常用不等式:

(1) (当且仅当a=b时取“=”号).

(2) (当且仅当a=b时取“=”号).

(3)

(4)柯西不等式

(5) .

72.极值定理

已知 都是正数,则有

(1)若积 是定值 ,则当 时和 有最小值 ;

(2)若和 是定值 ,则当 时积 有最大值 .

推广 已知 ,则有

(1)若积 是定值,则当 最大时, 最大;

当 最小时, 最小.

(2)若和 是定值,则当 最大时, 最小;

当 最小时, 最大.

73.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

.

74.含有绝对值的不等式

当a> 0时,有

.

或 .

75.无理不等式

(1)  .

(2) .

(3) .

76.指数不等式与对数不等式

(1)当 时,

;

.

(2)当 时,

;

77.斜率公式

( 、 ).

78.直线的五种方程

(1)点斜式  (直线 过点 ,且斜率为 ).

(2)斜截式 (b为直线 在y轴上的截距).

(3)两点式 ( )( 、  ( )).

(4)截距式  ( 分别为直线的横、纵截距, )

(5)一般式 (其中A、B不同时为0).

79.两条直线的平行和垂直

(1)若 ,

;

.

(2)若 , ,且A1、A2、B1、B2都不为零,

我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
一般衣柜移门的宽度为多少?
那位高手可以帮我开通汕头300MGPRS流量?
超级玩家获得的玫瑰锦囊存在在什么地方?
怎么给作文加副标题?
qq宠物怎么赚元宝最多
手机当当网的网址
谁推荐个Nokia的手机,1000-3000的。
有天龙八部逍遥或武当的号玩玩吗
关于流感的问题???
怎么能结为伴侣啊!谁能解释一下下…
QB换点卷 月底清空是吗
他嫁给了一个比我大16岁的人.再过4个月就要结
在VB设计中,使程序最小化的语句是什么
世龙世家灰指甲手足连锁(重庆石桥铺石新路店)
阴超却找不到环,是怎么回事
推荐资讯
宝马广场在哪里啊,我有事要去这个地方
快乐在哪里找
dnf龙人深渊爆什么装备?
求几本完本的言情小说(书名在内,有点多,所
好又多生鲜超市我想知道这个在什么地方
爱国感恩的名言警句,有什么诗句或名言来表达
国泰汽车美容蜡水洗车在什么地方啊,我要过去
目前全运会的金牌榜。
请问在桌面上删掉的相片能在哪里找回来,除了
发生交通事故,有人受伤怎么办?
永恒之塔魔族所有的副本和对应等级是什么?
劳动的开端的故事
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?