x2-6x+9=
2x2-8x+8=
2x2-8x+2=
-x2+2x-1=
-2x2+3×1=
.....a(x+m)2+n形式......x2...2是小2
x2-6x+9=
2x2-8x+8=
2x2-8x+2=
-x2+2x-1=
-2x2+3×1=
.....a(x+m)2+n形式......x2...2是小2
【配方思路】
1、通过提取的方法,将二次项系数化为“1”;比如:-x² + 2x - 1 = -(x² - 2x + 1)。
2、添加一次项系数的“1/2”倍作为完全平方数的第二个数,同时必须减掉这个数;比如:(-2/2)² - (-2/2)²
3、观察以下具体实例,并加以体会。
x² - 6x + 9 = x² - 6x + (-6/2)² - (-6/2)² + 9 = (x - 3)² - 9 + 9 = (x - 3)²
2x² - 8x + 8 = 2(x² - 4x + 4) = 2[x² - 4x + (-4/2)² - (-4/2)² + 4] = 2[(x - 2)² - 4 + 4] = 2(x - 2)²
2x² - 8x + 2 = 2(x² - 4x + 1) = 2[x² - 4x + (-4/2)² - (-4/2)² + 1] = 2[(x - 2)² - 3]
-x² + 2x - 1 = -(x² - 2x + 1) = -[x² - 2x + (-2/2)² - (-2/2)² + 1] = -[(x - 1)² + 0] = -(x - 1)²
-2x² + 3x + 1 = -2[x² - (3/2)x - 1/2] = -{x² - (3/2)x + [-3/(2×2)] - [-3/(2×2)] - 1/2}
= -[(x - 3/4)² + 1/4] = -(x - 3/4)² - 1/4