若每一项数列 满足Sn=1/n(n+1)求
S1+S2+....Sn的和
若每一项数列 满足Sn=1/n(n+1)求
S1+S2+....Sn的和
解:因为Sn=1/n(n+1).
所以S1+S2+...+Sn
=1/(1*2)+1/(2*3)+1/(3*4)+...+1/n(n+1)
=[(1- 1/2)+(1/2 - 1/3)+(1/3 -1/4)+...(1/n - 1/(n+1))]
=1 - 1/(n+1)
=n/(n+1)
Sn=1/n-1/(n+1)
S1+S2+S3+......+Sn=1-1/2+1/2-1/3+.........+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
解:Sn=1/n(n+1)=1/n-1/(n+1)
所以,S1+S2+S3+···+Sn=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+···+(1/n-1/(n+1))
=1-1/(n+1)
=n/(n+1)
1/n(n+1)=1/n-1/(n+1)
所以S1+S2+....Sn=1/1*2+1/2*3+……+1/n(n+1)=1-1/2+1/2-1/3+……+1/n-1/(n+1)=1-1/(n+1)
Sn=1/n(n+1)=1/n-1/(n+1)
∴S1+S2+……+Sn
=1-1/2+1/2-1/3+……+1/2-1/(n+1)
=1-1/(n+1)
=n/(n+1)