其中固定成本为2点8万元,并且每生产100台的生产成本为1万元;销售收入R(x)满足R(x)=
-0.4x^2+4.2x(0≤x≤5),R(x)=11(x>5)
1.要是工厂有盈利,产量应控制在什么范围内?
2.工厂生产多少台产品时,可使盈利最多?
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x,其总成本为G(x),
答案:2 悬赏:30 手机版
解决时间 2021-01-25 11:56
- 提问者网友:原来太熟悉了会陌生
- 2021-01-24 11:24
最佳答案
- 五星知识达人网友:不甚了了
- 2021-01-24 12:04
L(x)=利润=销售收入-成本=R(x)-(x)-2 【本题中,x的单位为百台】
一、因R(x)是分段函数,则需要讨论下。
1、若0≤x≤5,则只需要L(x)>0即可,得:
-0.4x²+4.2x-0.8-x-2>0 解得:1
2、若x>5,则L(x)>0等价于:10.2-x-2>0,得:x<8.2
总结:当0≤x<8.2时,工厂有盈利。
二、继续类似上题的分类讨论。
1、当0≤x≤5时,L(x)=-0.4x²+3.2x-2.8=-(0,4)(x-4)²+3.6
所以当x=4时,L(x)的最大值是3.6万元
2、若x>5,则L(x)=10.2-x-2=8.2-x,此时L(x)的最大值是当x=5时取得的,是3.2万元【取不到】
总结:当x=4时,利润最大,最大是3.6万元。
一、因R(x)是分段函数,则需要讨论下。
1、若0≤x≤5,则只需要L(x)>0即可,得:
-0.4x²+4.2x-0.8-x-2>0 解得:1
总结:当0≤x<8.2时,工厂有盈利。
二、继续类似上题的分类讨论。
1、当0≤x≤5时,L(x)=-0.4x²+3.2x-2.8=-(0,4)(x-4)²+3.6
所以当x=4时,L(x)的最大值是3.6万元
2、若x>5,则L(x)=10.2-x-2=8.2-x,此时L(x)的最大值是当x=5时取得的,是3.2万元【取不到】
总结:当x=4时,利润最大,最大是3.6万元。
全部回答
- 1楼网友:渡鹤影
- 2021-01-24 13:13
任务占坑
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯