P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°
求证:平面PEC⊥平面PCD
P为矩形ABCD所在平面外的一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°
答案:1 悬赏:80 手机版
解决时间 2021-05-23 10:55
- 提问者网友:遮云壑
- 2021-05-22 09:59
最佳答案
- 五星知识达人网友:躲不过心动
- 2021-05-22 11:01
取PC中点M,连结ME、MF
∵M、F是PC、PD中点,∴MF平行且等于1/2CD
又∵矩形ABCD中,E是AB中点,∴AE平行且等于1/2CD
∴AE平行且等于MF,∴AEMF是平行四边形,AF∥ME
∵PA⊥平面ABCD,∴PA⊥CD;又∵AD⊥CD,∴CD⊥平面PAD,∴CD⊥PD,∴∠PDA即为二面角P-CD-B的平面角,∠PDA=45°
又由PA⊥ABCD知PA⊥AD,因此△PAD是等腰直角三角形,∴AF⊥PD;又已证AF∥ME,∴ME⊥PD
∵CD⊥平面PAD,AB∥CD,∴AB⊥平面PAD,∴AE⊥AF;又∵AF∥ME,AE∥MF,∴ME⊥MF
∵PD、MF⊂平面PCD,ME⊂平面PEC,∴平面PEC⊥平面PCD
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯