(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;
(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时,f(x)=2x+1,求f(x)在区间[-2,0]上的表达式.
(1)已知函数f(x)的周期为4,且等式f(2+x)=f(2-x)对一切x∈R恒成立,求证f(x)为偶函数;(2)设奇函数f(x)的定义域为R,且f(x+4)=f(x
答案:2 悬赏:30 手机版
解决时间 2021-01-03 22:17
- 提问者网友:献世佛
- 2021-01-02 23:42
最佳答案
- 五星知识达人网友:詩光轨車
- 2021-01-03 00:31
(1)证明:∵f(2+x)=f(2-x)
∴f(2+(x+2))=f(2-(x+2)),即f(x+4)=f(-x)
又∵函数f(x)的周期为4
∴f(x+4)=f(x)
∴f(-x)=f(x)
又∵x∈R,定义域关于原点对称
∴函数f(x)是偶函数
(2)解:当x∈[-2,0]时,-x∈[0,2]
∴-x+4∈[4,6]
又∵当x∈[4,6]时,f(x)=2x+1
∴f(-x+4)=2-x+4+1
又∵f(x+4)=f(x)
∴函数f(x)的周期为T=4
∴f(-x+4)=f(-x)
又∵函数f(x)是R上的奇函数
∴f(-x)=-f(x)
∴-f(x)=2-x+4+1
∴当x∈[-2,0]时,f(x)=-2-x+4-1解析分析:(1)把关系式f(2+x)=f(2-x)变形,结合函数的周期,可得到f(-x)与f(-x)的关系,从而可确定原函数的奇偶性(2)由f(x+4)=f(x),可得原函数的周期,再结合奇偶性,可把自变量的范围[-2,0]转化到[4,6]上,再结合奇偶性,可得所求解析式点评:本题综合考查函数的周期性、奇偶性,以及函数解析式的求法.要注意函数性质的灵活转化.属简单题
∴f(2+(x+2))=f(2-(x+2)),即f(x+4)=f(-x)
又∵函数f(x)的周期为4
∴f(x+4)=f(x)
∴f(-x)=f(x)
又∵x∈R,定义域关于原点对称
∴函数f(x)是偶函数
(2)解:当x∈[-2,0]时,-x∈[0,2]
∴-x+4∈[4,6]
又∵当x∈[4,6]时,f(x)=2x+1
∴f(-x+4)=2-x+4+1
又∵f(x+4)=f(x)
∴函数f(x)的周期为T=4
∴f(-x+4)=f(-x)
又∵函数f(x)是R上的奇函数
∴f(-x)=-f(x)
∴-f(x)=2-x+4+1
∴当x∈[-2,0]时,f(x)=-2-x+4-1解析分析:(1)把关系式f(2+x)=f(2-x)变形,结合函数的周期,可得到f(-x)与f(-x)的关系,从而可确定原函数的奇偶性(2)由f(x+4)=f(x),可得原函数的周期,再结合奇偶性,可把自变量的范围[-2,0]转化到[4,6]上,再结合奇偶性,可得所求解析式点评:本题综合考查函数的周期性、奇偶性,以及函数解析式的求法.要注意函数性质的灵活转化.属简单题
全部回答
- 1楼网友:几近狂妄
- 2021-01-03 00:43
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯