【余弦公式】证明两角和的余弦公式
答案:2 悬赏:80 手机版
解决时间 2021-02-04 18:51
- 提问者网友:富士山上尢
- 2021-02-03 21:52
【余弦公式】证明两角和的余弦公式
最佳答案
- 五星知识达人网友:往事埋风中
- 2021-02-03 22:23
【答案】 首先,在三角形ABC中,角A,B,C所对边分别为a,b,c
若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D
由CD=asinB=bsinA
(做另两边的垂线,同理)
可证明正弦定理:a/sinA=b/sinB=c/sinC
于是有:
AD+BD=c
AD=acosA,BD=acosB
AD+BD=c
代入正弦定理,可得
sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA
即在A,B均为锐角的情况下,可证明正弦和的公式.利用正弦和余弦的定义及周期性,可证明该公式对任意角成立.(证明略),
于是有
cos(A+B)=sin(90-A-B)=sin(90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB
若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D
由CD=asinB=bsinA
(做另两边的垂线,同理)
可证明正弦定理:a/sinA=b/sinB=c/sinC
于是有:
AD+BD=c
AD=acosA,BD=acosB
AD+BD=c
代入正弦定理,可得
sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA
即在A,B均为锐角的情况下,可证明正弦和的公式.利用正弦和余弦的定义及周期性,可证明该公式对任意角成立.(证明略),
于是有
cos(A+B)=sin(90-A-B)=sin(90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB
全部回答
- 1楼网友:怙棘
- 2021-02-03 23:08
哦,回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯