已知F1,F2是双曲线x^2/9-y^2/16=1的两焦点,点M在双曲线上,如果向量MF1⊥向量MF2,求△MF2F1的面积?
已知F1,F2是双曲线x^2/9-y^2/16=1的两焦点,点M在双曲线上,如果向量MF1⊥向量MF2,求△MF2F1的
答案:1 悬赏:10 手机版
解决时间 2021-05-22 21:31
- 提问者网友:你给我的爱
- 2021-05-22 14:23
最佳答案
- 五星知识达人网友:行路难
- 2021-05-22 15:27
答案:16
解;设点M(x,y)
由题得:[y/(x+5)]* [y/(x-5)]=-1
所以 x^2+y^2=25
又 x^2/9-y^2/16=1
解之,y^2=256/25
所以,y的绝对值=16/5
所以△MF2F1的面积=10*(16/5)/2=16
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯