(1)在Rt三角形ABC中,∠C=90°,AC=5,BC=12,点D是BC边上的一点,当AD平分∠CAB时,求CD的长
(2)在三角形ABC中,AB=AC=5,P是BC上的任意一点,求证AP的平方+PB*PC=25
(1)在Rt三角形ABC中,∠C=90°,AC=5,BC=12,点D是BC边上的一点,当AD平分∠CAB时,求CD的长
(2)在三角形ABC中,AB=AC=5,P是BC上的任意一点,求证AP的平方+PB*PC=25
(1)做一垂直线DE⊥AB,交AB于E,
由于∠C=90°,AC=5,BC=12,则AB=13,
由于AD平分∠CAB,则△ACD≌△AED,则CD=DE,AE=AC=5,则BE=8
设CD=DE=X,则根据勾股定理得BE^2+DE^2=BD^2,即X^2+8^2=(12-X)^2
解得X=10/3,即CD=10/3
(2)