计算一个简单二重积分
答案:1 悬赏:70 手机版
解决时间 2021-01-06 23:13
- 提问者网友:树红树绿
- 2021-01-06 20:14
计算一个简单二重积分
最佳答案
- 五星知识达人网友:痴妹与他
- 2021-01-06 21:02
解:分享一种解法。设f(x,y)=丨x丨+ye^(x^2),
∵丨x丨=1-丨y丨,∴-1≤x≤1。去绝对值号后,易得D是y=-x-1、y=x+1、y=1-x、y=x-1组成的正方形区域。
∴原式=∫(-1,0)dx∫(-x-1,x+1)f(x,y)dy+∫(0,1)dx∫(x-1,1-x)f(x,y)dy。
而,∫(-x-1,x+1)f(x,y)dy=∫(-x-1,x+1)[丨x丨+ye^(x^2)]dy=2(x+1)丨x丨、∫(x-1,1-x)f(x,y)dy=∫(x-1,1-x)[丨x丨+ye^(x^2)]dy=2(x-1)丨x丨,
∴原式=2∫(-1,0)(x+1)丨x丨dx+2∫(0,1)(x-1)丨x丨dx=0。供参考。
∵丨x丨=1-丨y丨,∴-1≤x≤1。去绝对值号后,易得D是y=-x-1、y=x+1、y=1-x、y=x-1组成的正方形区域。
∴原式=∫(-1,0)dx∫(-x-1,x+1)f(x,y)dy+∫(0,1)dx∫(x-1,1-x)f(x,y)dy。
而,∫(-x-1,x+1)f(x,y)dy=∫(-x-1,x+1)[丨x丨+ye^(x^2)]dy=2(x+1)丨x丨、∫(x-1,1-x)f(x,y)dy=∫(x-1,1-x)[丨x丨+ye^(x^2)]dy=2(x-1)丨x丨,
∴原式=2∫(-1,0)(x+1)丨x丨dx+2∫(0,1)(x-1)丨x丨dx=0。供参考。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯