matlab里有什么工具箱,可以用FFT(快速傅立叶变换)做频谱分析
答案:3 悬赏:40 手机版
解决时间 2021-02-03 00:47
- 提问者网友:欲望失宠
- 2021-02-02 07:44
matlab里有什么工具箱,可以用FFT(快速傅立叶变换)做频谱分析
最佳答案
- 五星知识达人网友:刀戟声无边
- 2021-02-02 08:22
1、采样数据导入Matlab 。
采样数据的导入至少有三种方法。
第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。
第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。
第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load等,如采样数据保存在txt文件中,则推荐使用 textread命令。如[a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。
2、对采样数据进行频谱分析 。
频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100;
t=[0:1/fs:100];
N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N
p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t);
%上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析
figure(1) plot(t,p); grid on
title('信号 p(t)'); xlabel('t') ylabel('p') Y=fft(p);
magY=abs(Y(1:1:N/2))*2/N; f=(0:N/2-1)'*fs/N; figure(2)
%plot(f,magY);
h=stem(f,magY,'fill','--');
set(h,'MarkerEdgeColor','red','Marker','*') grid on
title('频谱图 (理想值:[0.48Hz,1.3]、[0.52Hz,2.1]、[0.53Hz,1.1]、[1.8Hz,0.5]、[2.2Hz,0.9]) '); xlabel('f (Hz)') ylabel('幅值')
对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F<0.01,即采样时间ts>100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数N=fs*ts。这就从理论上对采样时间ts和采样总点数N提出了要求,以保证频谱分析的精准度。
采样数据的导入至少有三种方法。
第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。
第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。
第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load等,如采样数据保存在txt文件中,则推荐使用 textread命令。如[a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。
2、对采样数据进行频谱分析 。
频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100;
t=[0:1/fs:100];
N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N
p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t);
%上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析
figure(1) plot(t,p); grid on
title('信号 p(t)'); xlabel('t') ylabel('p') Y=fft(p);
magY=abs(Y(1:1:N/2))*2/N; f=(0:N/2-1)'*fs/N; figure(2)
%plot(f,magY);
h=stem(f,magY,'fill','--');
set(h,'MarkerEdgeColor','red','Marker','*') grid on
title('频谱图 (理想值:[0.48Hz,1.3]、[0.52Hz,2.1]、[0.53Hz,1.1]、[1.8Hz,0.5]、[2.2Hz,0.9]) '); xlabel('f (Hz)') ylabel('幅值')
对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F<0.01,即采样时间ts>100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数N=fs*ts。这就从理论上对采样时间ts和采样总点数N提出了要求,以保证频谱分析的精准度。
全部回答
- 1楼网友:行雁书
- 2021-02-02 10:24
matlab 基本工具箱中的data analysis中的fourier analysis中就有fft函数包括快速傅立叶变换还有反变换什么的。
- 2楼网友:胯下狙击手
- 2021-02-02 08:45
Image Process 里好像有,不过help fft2试试
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯