矩阵的秩与矩阵是否可逆 有什么关系啊
答案:3 悬赏:50 手机版
解决时间 2021-11-12 19:47
- 提问者网友:火车头
- 2021-11-12 14:31
矩阵的秩与矩阵是否可逆 有什么关系啊
最佳答案
- 五星知识达人网友:渊鱼
- 2021-11-12 16:05
An可逆,r(A)=n 或 |A|≠0。
阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。
m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A
的秩,记作rA,或rankA或R(A)。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:
若A中至少有一个r阶子式不等于零,且在r 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。
例1. 计算下面矩阵的秩,
而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所
有的三阶子式全为零,所以rA=2。
矩阵的秩
引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
定理 矩阵的行秩,列秩,秩都相等。
定理 初等变换不改变矩阵的秩。
定理 矩阵的乘积的秩Rab<=min{Ra,Rb};
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。
m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A
的秩,记作rA,或rankA或R(A)。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:
若A中至少有一个r阶子式不等于零,且在r
由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。
例1. 计算下面矩阵的秩,
而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所
有的三阶子式全为零,所以rA=2。
矩阵的秩
引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
定理 矩阵的行秩,列秩,秩都相等。
定理 初等变换不改变矩阵的秩。
定理 矩阵的乘积的秩Rab<=min{Ra,Rb};
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
全部回答
- 1楼网友:荒野風
- 2021-11-12 17:44
怎么没人回答……我也想知道……
- 2楼网友:千夜
- 2021-11-12 17:06
矩阵的秩如果不等于矩阵的行数则此矩阵无逆矩阵。讨论矩阵的逆,首先此矩阵必为方阵,转变为行列式,若秩不等于行数,此行列式必为零。故没有逆矩阵。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯