【数学趣题】有哪些数学趣题?要快!
答案:2 悬赏:10 手机版
解决时间 2021-03-05 10:13
- 提问者网友:十年饮冰
- 2021-03-04 20:34
【数学趣题】有哪些数学趣题?要快!
最佳答案
- 五星知识达人网友:北城痞子
- 2021-03-04 21:02
【答案】 有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板. 后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们, 服务生偷偷藏起了2元, 然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱, 3个人每人9元,3 X 9 = 27 元 + 服务生藏起的2元=29元,还有一元钱去了哪里?
这是典型的误导题,三人住店的成本是27元,这27元包括25元住宿费(老板手里)+2元服务生贪污的,还有找会的3元,一共是30元.
小明和小强都是张老师的学生,张老师的生日是M月N日,2人都知道张老师的生日
是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小强,张老师问他们知道他的生日是那一天吗?
3月4日 3月5日 3月8日
6月4日 6月7日
9月1日 9月5日
12月1日 12月2日 12月8日
小明说:如果我不知道的话,小强肯定也不知道
小强说:本来我也不知道,但是现在我知道了
小明说:哦,那我也知道了
请根据以上对话推断出张老师的生日是哪一天
答案是:9月1日.
相关的推理:
1.小明说:“如果我不知道的话,小强肯定也不知道”.
这句话的潜台词实际上是:“我应该猜对了,如果我猜错的话,小强肯定不知道”.但小明还是不确定自己究竟猜对没,需要小强来印证.M取什么值能让小明这么说呢?显然6和12不可取,如果M为6或12,N就有可能是2或7——小强凭2或7一个数字就能得知张老师的生日.则M只可能是3或9,而N只能在1、4、5、8中取值.
如果M是3,N可以取三种值,结果成了“如果小明不知道,小强有可能知道(2-4,3-8),也有可能不知道(3-5).”,在这种情况下,小明说“如果我不知道的话,小强肯定也不知道”是不符合事实的,小明不足以如此自信的这样说.
如果M是9,则小明就知道N只能是1或者5.此时,小明的猜测正是N=1,而N究竟是不是1,小明也不确信,如果N不是1而是5,则就出现了小明说的“如果我不知道的话,小强肯定也不知道”.至此,实际上小明已经知道了,结果只有两种情况,只等小强来确认N是不是5.
2.小强说:“本来我也不知道,但是现在我知道了”.
小强说“本来我也不知道”,验证了N确实不是2或者7;同时,小强也知道了“M不是6或12,M只剩下3和9可取”.若N是5,则小强应该说“本来我也不知道,现在我还是不知道”.根据第一节的推断,N=1,所以小强才能说“本来我也不知道,但是现在我知道了”.
3.小明说:“那我也知道了”
小明就等着小强的一句话了,不管小强怎么回答,小明都会知道正确答案.如果小强说“我还是不知道”,那么小明依然可以知道“只有N=5会让小强茫然”,因此答案是9月5日;如果小强说“我知道了”,那么就必然是9月1日.
其实,自始至终,小明都是明白的,他只需要小强说句话验证他的猜测,对小明而言,是个非A即B的选择题.因此,按照题目本身的故事发展线索,小明的第三句话是可以不用的,很多人推导的时候却用上了这个条件——那样就有点像做数学题了.
一天,一个顾客到老张的玩具店,看中了一只玩具青蛙,零售价格是23元(成本是16元),便拿出一张100元的钞票给老张,由于老张没有零钱找赎,便到街坊处换了100元的零钞,回来后找了77元给顾客.
后来,街坊说老张的100元是假钞,老张只好再还回100元给街坊.
老张在这次交易中共损失了多少钱?
93
有12个球,有一个坏了,或轻或重.现在有一个天平,怎样可以只称三次而找出坏掉的球
将十二个球编号为1-12.
第一次,先将1-4号放在左边,5-8号放在右边.
1.如果右重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球轻;如果是5号,则它比标准球重.
第三次将1号放在左边,2号放在右边.
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻.
第三次将2号放在左边,3号放在右边.
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻.
3.如果左重则坏球在拿到左边的6-8号,且比标准球重.
第三次将6号放在左边,7号放在右边.
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重.
2.如果天平平衡,则坏球在9-12号.
第二次将1-3号放在左边,9-11号放在右边.
1.如果右重则坏球在9-11号且坏球较重.
第三次将9号放在左边,10号放在右边.
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重.
2.如果平衡则坏球为12号.
第三次将1号放在左边,12号放在右边.
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻.
3.如果左重则坏球在9-11号且坏球较轻.
第三次将9号放在左边,10号放在右边.
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻.
3.如果左重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻.
第三次将6号放在左边,7号放在右边.
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重.
第三次将2号放在左边,3号放在右边.
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重.
3.如果左重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球重;如果是5号,则它比标准球轻.
第三次将1号放在左边,2号放在右边.
1.这次不可能右重.
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;
够麻烦的吧.其实里面有许多情况是对称的,比如第一次称时的右重和右轻,只需考虑一种就可以了,另一种完全可以比照执行.我把整个过程写下来,只是想吓唬吓唬大家.
稍微试一下,就可以知道只称两次是不可能保证找到坏球的.如果给的是十三个球,以上的解法也基本有效,只是要有个小小的改动,就是在这种情况下,在第一第二次都平衡的时候,第三次还是有可能平衡(就是上面的第2.2.2步),那么我们可以肯定坏球是13号球,可是我们没法知道它到底是比标准球轻,还是比标准球重.如果给的是十四个球,我们会发现无论如何也不可能只称三次,就保证找出坏球.
一个自然而然的问题就是:对于给定的自然数N,我们怎么来解有N个球的称球问题?
在下面的讨论中,给定任一自然数N,我们要解决以下问题:
⑴找出N球称球问题所需的最小次数,并证明以上所给的最小次数的确是最小的;
⑵给出最小次数称球的具体方法;
⑶如果只要求找出坏球而不要求知道坏球的轻重,对N球称球问题解决以上两个问题;
还有一个我们并不是那么感兴趣,但是作为副产品的问题是:
⑷如果除了所给的N个球外,另外还给一标准球,解决以上三个问题.
这是典型的误导题,三人住店的成本是27元,这27元包括25元住宿费(老板手里)+2元服务生贪污的,还有找会的3元,一共是30元.
小明和小强都是张老师的学生,张老师的生日是M月N日,2人都知道张老师的生日
是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小强,张老师问他们知道他的生日是那一天吗?
3月4日 3月5日 3月8日
6月4日 6月7日
9月1日 9月5日
12月1日 12月2日 12月8日
小明说:如果我不知道的话,小强肯定也不知道
小强说:本来我也不知道,但是现在我知道了
小明说:哦,那我也知道了
请根据以上对话推断出张老师的生日是哪一天
答案是:9月1日.
相关的推理:
1.小明说:“如果我不知道的话,小强肯定也不知道”.
这句话的潜台词实际上是:“我应该猜对了,如果我猜错的话,小强肯定不知道”.但小明还是不确定自己究竟猜对没,需要小强来印证.M取什么值能让小明这么说呢?显然6和12不可取,如果M为6或12,N就有可能是2或7——小强凭2或7一个数字就能得知张老师的生日.则M只可能是3或9,而N只能在1、4、5、8中取值.
如果M是3,N可以取三种值,结果成了“如果小明不知道,小强有可能知道(2-4,3-8),也有可能不知道(3-5).”,在这种情况下,小明说“如果我不知道的话,小强肯定也不知道”是不符合事实的,小明不足以如此自信的这样说.
如果M是9,则小明就知道N只能是1或者5.此时,小明的猜测正是N=1,而N究竟是不是1,小明也不确信,如果N不是1而是5,则就出现了小明说的“如果我不知道的话,小强肯定也不知道”.至此,实际上小明已经知道了,结果只有两种情况,只等小强来确认N是不是5.
2.小强说:“本来我也不知道,但是现在我知道了”.
小强说“本来我也不知道”,验证了N确实不是2或者7;同时,小强也知道了“M不是6或12,M只剩下3和9可取”.若N是5,则小强应该说“本来我也不知道,现在我还是不知道”.根据第一节的推断,N=1,所以小强才能说“本来我也不知道,但是现在我知道了”.
3.小明说:“那我也知道了”
小明就等着小强的一句话了,不管小强怎么回答,小明都会知道正确答案.如果小强说“我还是不知道”,那么小明依然可以知道“只有N=5会让小强茫然”,因此答案是9月5日;如果小强说“我知道了”,那么就必然是9月1日.
其实,自始至终,小明都是明白的,他只需要小强说句话验证他的猜测,对小明而言,是个非A即B的选择题.因此,按照题目本身的故事发展线索,小明的第三句话是可以不用的,很多人推导的时候却用上了这个条件——那样就有点像做数学题了.
一天,一个顾客到老张的玩具店,看中了一只玩具青蛙,零售价格是23元(成本是16元),便拿出一张100元的钞票给老张,由于老张没有零钱找赎,便到街坊处换了100元的零钞,回来后找了77元给顾客.
后来,街坊说老张的100元是假钞,老张只好再还回100元给街坊.
老张在这次交易中共损失了多少钱?
93
有12个球,有一个坏了,或轻或重.现在有一个天平,怎样可以只称三次而找出坏掉的球
将十二个球编号为1-12.
第一次,先将1-4号放在左边,5-8号放在右边.
1.如果右重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球轻;如果是5号,则它比标准球重.
第三次将1号放在左边,2号放在右边.
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻.
第三次将2号放在左边,3号放在右边.
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻.
3.如果左重则坏球在拿到左边的6-8号,且比标准球重.
第三次将6号放在左边,7号放在右边.
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重.
2.如果天平平衡,则坏球在9-12号.
第二次将1-3号放在左边,9-11号放在右边.
1.如果右重则坏球在9-11号且坏球较重.
第三次将9号放在左边,10号放在右边.
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重.
2.如果平衡则坏球为12号.
第三次将1号放在左边,12号放在右边.
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻.
3.如果左重则坏球在9-11号且坏球较轻.
第三次将9号放在左边,10号放在右边.
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻.
3.如果左重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻.
第三次将6号放在左边,7号放在右边.
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重.
第三次将2号放在左边,3号放在右边.
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重.
3.如果左重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球重;如果是5号,则它比标准球轻.
第三次将1号放在左边,2号放在右边.
1.这次不可能右重.
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;
够麻烦的吧.其实里面有许多情况是对称的,比如第一次称时的右重和右轻,只需考虑一种就可以了,另一种完全可以比照执行.我把整个过程写下来,只是想吓唬吓唬大家.
稍微试一下,就可以知道只称两次是不可能保证找到坏球的.如果给的是十三个球,以上的解法也基本有效,只是要有个小小的改动,就是在这种情况下,在第一第二次都平衡的时候,第三次还是有可能平衡(就是上面的第2.2.2步),那么我们可以肯定坏球是13号球,可是我们没法知道它到底是比标准球轻,还是比标准球重.如果给的是十四个球,我们会发现无论如何也不可能只称三次,就保证找出坏球.
一个自然而然的问题就是:对于给定的自然数N,我们怎么来解有N个球的称球问题?
在下面的讨论中,给定任一自然数N,我们要解决以下问题:
⑴找出N球称球问题所需的最小次数,并证明以上所给的最小次数的确是最小的;
⑵给出最小次数称球的具体方法;
⑶如果只要求找出坏球而不要求知道坏球的轻重,对N球称球问题解决以上两个问题;
还有一个我们并不是那么感兴趣,但是作为副产品的问题是:
⑷如果除了所给的N个球外,另外还给一标准球,解决以上三个问题.
全部回答
- 1楼网友:廢物販賣機
- 2021-03-04 22:04
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯