1、如图1把正方形CGEF的对角线CE放在ABCD的边BC的延长线上,(OG>BC),取线段AE的中点M,探究:MD与MF
1、如图1把正方形CGEF的对角线CE放在ABCD的边BC的延长线上,(OG>BC),取线段AE的中点M,探究:MD与M
答案:1 悬赏:40 手机版
解决时间 2021-08-15 00:53
- 提问者网友:最爱你的唇
- 2021-08-14 16:48
最佳答案
- 五星知识达人网友:愁杀梦里人
- 2021-08-14 18:17
四边形ABCD是正方形吗?应该是CG>BC吧?是探究MD与MF的关系吗?不知是否是这个图~
MD⊥MF,且MD=MF
证明:连接DF,FN,
由CE是正方形的对角线,得到∠DCF=∠NEF=45°,
∵AD∥BC.
∴∠EAD=∠AEN
∵∠DMA=∠NME
又∵M是线段AE的中点,
∴AM=ME.
∴△ADM≌△ENM(ASA).
∴AD=NE
又∵四边形CGEF是正方形,
∴FC=FE.
∴△DCF≌△NEF(SAS).
∴FD=FN,∠DFC=∠NFE,
∴△FDN是等腰三角形,
又∵∠CFN+∠EFN=90°,
∴∠DFC+∠CFN=90°,即∠DFN=90°,
∴△FDN为等腰直角三角形,
又∵M为DN的中点,
∴MD=MF=1/2DN;
∵△ADM≌△ENM,
∴DM=MN.
∴MD⊥MF.
名师点评:
恋恋ぃ圩
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯